Math, asked by kundanrajatraj9617, 1 month ago

If x=asinthita and y=bcosthita, then d^2y_dx^2 is equal to

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = a \: sin \theta

and

\rm :\longmapsto\:y \:  =  \: b \: cos\theta

So,

\rm :\longmapsto\:\dfrac{dx}{d\theta}  = \dfrac{d}{d\theta}a \: sin\theta

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}sinx = cosx \: }}

So, we get

\rm \implies\:\boxed{ \tt{ \: \dfrac{dx}{d\theta} = a \: cos\theta \: }}

Also,

\rm :\longmapsto\:\dfrac{dy}{d\theta} = \dfrac{d}{d\theta}b \: cos\theta

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}cosx =  -  \: sinx \: }}

So, we get

\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{d\theta} =  -  \: b \: sin\theta \: }}

Therefore,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{dy}{d\theta} \div \dfrac{dx}{d\theta}

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: b \: sin\theta \:  \div  \: a \: cos\theta

\bf :\longmapsto\:\dfrac{dy}{dx} =  -  \: \dfrac{b}{a}tan\theta

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =  -  \: \dfrac{b}{a} \:  {sec}^{2}\theta \: \dfrac{d\theta}{dx}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =  -  \: \dfrac{b}{a} \:   \times \dfrac{1}{ {cos}^{2} \theta}   \times \dfrac{1}{a \: cos\theta}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =  -  \: \dfrac{b}{ {a}^{2} \:  {cos}^{3}\theta} \:

As it is given that,

\rm :\longmapsto\:y = b \: cos \theta\rm \implies\:cos\theta = \dfrac{y}{b}

So, on substituting the value, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{b}{ {a}^{2}  \times  {\bigg[\dfrac{y}{b} \bigg]}^{3} }

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{b \times  {b}^{3} }{ {a}^{2} \times  {y}^{3}  }

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{{b}^{4} }{ {a}^{2} \times  {y}^{3}  }

 \red{\rm \implies\:\boxed{ \tt{ \: \:\dfrac{ {d}^{2} y}{d {x}^{2} }  \: =  \:  -  \: \dfrac{{b}^{4} }{ {a}^{2} {y}^{3}  } }}}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions