Math, asked by poojayadavlokes1526, 11 months ago

If x=at², y=2at, then d²y/dx²=...........,Select Proper option from the given options.
(a) -1/t²
(b) 1/t²
(c) -1/2at³
(d) 1/2at³

Answers

Answered by rishu6845
1

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by bestwriters
1

\bold{\frac{d^{2} y}{d x^{2}} = (c) -\frac{1}{2 a t^{3}}}

Given:

x=a t^{2}

y=2 a t

To find:

\frac{d^{2} y}{d x^{2}}

Step-by-step explanation:

On differentiating ‘x’ wrt to ‘t’, we get,

\frac{d x}{d t}=2 a t

On differentiating ‘y’ wrt to ‘t’, we get,

\frac{d y}{d t}=2 a

Now, we need to apply the chain rule, which is:

\Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}

\Rightarrow \frac{d y}{d x}=\frac{2 a}{2 a t}

\therefore \frac{d y}{d x}=\frac{1}{t}

On differentiating above equation wrt to ‘x’, we get,

\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)

On applying chain rule, we get,

\frac{d^{2} y}{d x^{2}}=\frac{d}{d t} \frac{d t}{d x} \left(\frac{d y}{d x}\right)

On reciprocating the equation, we get,

\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{1}{t}\right)}{\frac{d x}{d t}}

\frac{d^{2} y}{d x^{2}}=\frac{-\frac{1}{t^{2}}}{2 a t}

\frac{d^{2} y}{d x^{2}}=-\frac{1}{t^{2}(2 a t)}

\therefore \frac{d^{2} y}{d x^{2}}=-\frac{1}{2 a t^{3}}

Similar questions