if x/b+b/x=a/b+b/a find the roots of the equation
Answers
Answer:
(X+b)/(a-b)=(x-b)/(a+b) (x+b)(a+b)=(a-b)(x-b) ax+bx+ab+b² = ax-ab-bx+b² bx+ab = -ab-bx 2bx= -2ab x= -a.
(X+b)/(a-b)=(x-b)/(a+b) (x+b)(a+b)=(a-b)(x-b) ax+bx+ab+b² = ax-ab-bx+b² bx+ab = -ab-bx ...
(x+b)/(a-b) = (x-b)/(a+b). or (x+b)/(x-b) = (a-b)/(a+b) . Apply componendo and dividendo ...
Answer:
x = a and x = b²/a
Step-by-step explanation:
x/b + b/x = a/b + b/a
=> (x²+b²)/bx = (a²+b²)/ab
=> (x²+b²)ab = (a²+b²)bx
[b can be cancelled out]
=> ax² + ab² = a²x + b²x
=> ax² - (a²+b²)x + ab² = 0
where, a = a , b = -(a²+b²) , c = ab²
=> ax² -a²x - b²x + ab² = 0
=> ax(x - a) - b²(x-a) = 0
=> (x-a)(ax-b²) = 0
=> x= a , x = b²/a
verification,
sum of roots = -b/a
=> a + b²/a = -{-(a²+b²)}\a
=> (a²+b²)/a = (a²+b²)/a
product of roots = c/a
=> a × b²/a = ab²/a
=> b² = b²
#SPJ3