Math, asked by anithamariserla, 10 months ago

if x/b+b/x=a/b+b/a find the roots of the equation​

Answers

Answered by Anonymous
12

Answer:

(X+b)/(a-b)=(x-b)/(a+b) (x+b)(a+b)=(a-b)(x-b) ax+bx+ab+b² = ax-ab-bx+b² bx+ab = -ab-bx 2bx= -2ab x= -a.

(X+b)/(a-b)=(x-b)/(a+b) (x+b)(a+b)=(a-b)(x-b) ax+bx+ab+b² = ax-ab-bx+b² bx+ab = -ab-bx ...

(x+b)/(a-b) = (x-b)/(a+b). or (x+b)/(x-b) = (a-b)/(a+b) . Apply componendo and dividendo ...

Answered by rohitkumargupta
4

Answer:

x = a and x = b²/a

Step-by-step explanation:

x/b + b/x = a/b + b/a

=> (+)/bx = (+)/ab

=> (+)ab = (+)bx

[b can be cancelled out]

=> ax² + ab² = x + x

=> ax² - (+)x + ab² = 0

where, a = a , b = -(+) , c = ab²

=> ax² -a²x - x + ab² = 0

=> ax(x - a) - (x-a) = 0

=> (x-a)(ax-b²) = 0

=> x= a , x = /a

verification,

sum of roots = -b/a

=> a + /a = -{-(+)}\a

=> (+)/a = (+)/a

product of roots = c/a

=> a × /a = ab²/a

=> =

#SPJ3

Similar questions