Math, asked by shamalibasak66, 2 days ago

if, x/b+c = y/c+a = z/a+b then show that a/y+x-z = b/z+x-y = c/x+y-z​

Answers

Answered by user0888
6

\large\textrm{The given equation is proven true.}

\Large\textbf{\boxed{\rm{Question}}}

\textbf{Prove that:-}

\dfrac{x}{y+z-x}=\dfrac{b}{z+x-y}=\dfrac{c}{x+y-z}

\textbf{if $\dfrac{x}{b+c}=\dfrac{y}{c+a}=\dfrac{z}{a+b}$}

\Large\boxed{\rm{Concept}}

\Large\textbf{Ratios}

\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}=k

a=bk, c=dk, e=fk

\cdots\longrightarrow\boxed{\dfrac{a+c-e}{b+d-f}=\dfrac{e+a-c}{f+b-d}=\dfrac{c+e-a}{d+f-b}=k}

It is an idea, not a formula. In simple words, we can apply the same calculation to both the numerator and denominator without the value changing.

\Large\boxed{\rm{Solution}}

\Large\textbf{Given equation: -}

\dfrac{x}{b+c}=\dfrac{y}{c+a}=\dfrac{z}{a+b}

\textrm{inverse}

\dfrac{b+c}{x}=\dfrac{c+a}{y}=\dfrac{a+b}{z}

\small\text{$\dfrac{(b+c)+(c+a)-(a+b)}{x+y-z}=\dfrac{(c+a)+(a+b)-(b+c)}{y+z-x}=\dfrac{(a+b)+(b+c)-(c-a)}{z+x-y}$}

\text{$\dfrac{2c}{x+y-z}=\dfrac{2a}{y+z-x}=\dfrac{2b}{z+x-y}$}

\text{$\dfrac{c}{x+y-z}=\dfrac{a}{y+z-x}=\dfrac{b}{z+x-y}$}

\textrm{rearrange}

\text{$\dfrac{a}{y+z-x}=\dfrac{b}{z+x-y}=\dfrac{c}{x+y-z}$}

\Large\boxed{\rm{Result}}

Hence it is proven that the given equation is true.

\Large\boxed{\text{Learn more}}

\Large\textbf{Ratios}

The concept leads to some important rules.

\Large\textbf{Componendo}

\cdots\longrightarrow\boxed{\textrm{$\dfrac{a}{b}=\dfrac{c}{d}$ then $\dfrac{a+b}{b}=\dfrac{c+d}{d}$}}

\Large\textbf{Dividendo}

\cdots\longrightarrow\boxed{\textrm{$\dfrac{a}{b}=\dfrac{c}{d}$ then $\dfrac{a-b}{b}=\dfrac{c-d}{d}$}}

\Large\textbf{Componendo - Dividendo}

\cdots\longrightarrow\boxed{\textrm{$\dfrac{a}{b}=\dfrac{c}{d}$ then $\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}$}}

\cdots\longrightarrow\boxed{\textrm{$\dfrac{a}{b}=\dfrac{c}{d}$ then $\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}$}}

We can solve questions relating to ratios very effortlessly.

\textbf{Solve: -}

\dfrac{\sqrt{3x+4}+\sqrt{3x-5}}{\sqrt{3x+4}-\sqrt{3x-5}}=9

\dfrac{\sqrt{3x+4}+\sqrt{3x-5}}{\sqrt{3x+4}-\sqrt{3x-5}}=\dfrac{9}{1}

\textrm{componendo-dividendo}

\dfrac{\sqrt{3x+4}+\sqrt{3x-5}+\sqrt{3x+4}-\sqrt{3x-5}}{\sqrt{3x+4}+\sqrt{3x-5}-\sqrt{3x+4}+\sqrt{3x-5}}=\dfrac{9+1}{9-1}

\dfrac{2\sqrt{3x+4}}{2\sqrt{3x-5}}=\dfrac{10}{8}

\sqrt{\dfrac{3x+4}{3x-5}}=\dfrac{5}{4}

\dfrac{3x+4}{3x-5}=\dfrac{25}{16}

25(3x-5)=16(3x+4)

75x-125=48x+64

75x-48x=64+125

27x=189

x=7

Some might solve this by rationalization. However, without using rationalization, we solved the question effortlessly. So, this technique is worth knowing.

Similar questions