Math, asked by pritammallick4567, 4 months ago

if x/b+y/a=a/b ,bx-ay=ab then value of x^2+y^2​

Answers

Answered by Bidikha
12

Given -

 \frac{x}{b}  +  \frac{y}{a}  =  \frac{a}{b}  \: and \: bx - ay = ab

To find -

 {x}^{2}  +  {y}^{2}

Solution -

 \frac{x}{b}  +  \frac{y}{a}  =  \frac{a}{b}

 \frac{ax + by}{ab}  =  \frac{a}{b}

ax + by =  \frac{a}{b}  \times ab

ax + by =   {a}^{2} .......1)

And,

bx - ay = ab........2)

Now,

1) ×a and 2)×b

Then the equations becomes

 {a}^{2} x + aby =  {a}^{3} .....3)

And,

 {b}^{2} x - aby = a {b}^{2} ....4)

Now,

3) + 4)

 {a}^{2} x + aby +  {b}^{2} x - aby =  {a}^{3}  + a {b}^{2}

 {a}^{2} x +  {b}^{2} x =  {a}^{3}  + a {b}^{2}

x( {a}^{2}  +  {b}^{2} ) = a( {a}^{2}  +  {b}^{2} )

x = a

Putting the value of x in equation 1) we will get -

a×a+by=a²

a²+by=a²

by=0

y=0

Now,

=x²+y²

=a²+0

=a²

Therefore the value of + is


Sitααrα: ধুনীয়া!
Bidikha: ধন্যবাদ
Similar questions