If 'x' be real, prove that,
can have no value between 5 and 9.
✔️✔️ quality answer needed✔️✔️
Answers
Answered by
37
Let , hope this will help you mark as brainliest
Attachments:
rahman786khalilu:
thank u
Answered by
15
Step-by-step explanation:
Given: (x² + 34x - 71)/(x² + 2x - 7)
Let y = (x² + 34x - 71)/(x² + 2x - 7)
⇒ x²y + 2xy - 7y = x² + 34x - 71
⇒ (y - 1)x² + 2(y - 17)x - (7y - 71) = 0
Given that x is real. x ∈ R.
Δ ≥ 0
⇒ 4(y - 17)² + 4(y - 1)(7y - 71) ≥ 0
⇒ y² - 34y + 289 + 7y²- 7y - 71y + 71 ≥ 0
⇒ 8y² - 112y + 360 ≥ 0
⇒ y² - 14y + 45 ≥ 0
⇒ y² - 9y - 5y + 45 ≥ 0
⇒ y(y - 9) - 5(y - 9) ≥ 0
⇒ (y - 5)(y - 9) ≥ 0
⇒ y ∈ (-∞,5] ∪ [9,∞)
⇒ y ∉ (5,9)
∴ Expression does not lie between 5 and 9.
Hope it helps!
Similar questions