if x belongs to [-2π,2π] and log0.5sinx=1-log0.5cosx then find the solution of the equation
Answers
Answered by
1
Answer:
log
0.5
sinx=1−log
0.5
cosx where x∈[−2π,2π]
Above equation is valid when, sinx>0,
⇒x∈(−2π,−π)∪(0,π)
and cosx>0
⇒x∈(−2π,−
2
3π
)∪(−
2
π
,
2
π
)∪(
2
3π
,2π)
Therefore, x∈(−2π,−
2
3π
)∪(0,
2
π
)
log
0.5
sinx=1−log
0.5
cosx
⇒log
0.5
sinx+log
0.5
cosx=1
⇒log
0.5
(sinxcosx)=1,[∵loga+logb=log(ab)]
⇒sinxcosx=0.5
1
=
2
1
⇒2sinxcosx=1
⇒sin2x=1
⇒cos2x=0
⇒1−2sin
2
x=0
⇒sin
2
x=
2
1
⇒sinx=±
2
1
Now, ∵x∈(−2π,−
2
3π
)∪(0,
2
π
)
∴x={−
4
7π
,
4
π
}
Hence there are two solutions in the given interval
Ans: B
Similar questions