Math, asked by sangitanaisarai30, 10 months ago

If x=c√b+4 then find the value of x+1/x

Answers

Answered by jain80991
1

x+ 1/x = c√b + 4 + 1 / (c√b + 4)

= ((c√b+4)^2 +1) /(c√b+4)

= (c^2 b + 8 c√b + 16+1) / (c√b+4)

= (c^2 b + 8 c√b + 17) / (c√b+4)

Answered by Salmonpanna2022
3

Step-by-step explanation:

 \bf \underline{Given-} \\

 \rm{x = c \sqrt{5}  + 4} \\

 \bf \underline{To  \: find-} \\

 \rm{the \: value \: of \: x +  \frac{1}{x}   =? }   \\

 \bf \underline{Solution-} \\

\textsf{We have} \\

 \rm{x = c \sqrt{b}  + 4} \\

 \rm{ \therefore \: \frac{1}{x}  =  \frac{1}{c \sqrt{b}  + 4}  } \\

\textsf{Here the denominator is c√b + 4} \\

\textsf{We know that,} \\

\textsf{Rationalising factor of a√b+c = a√b-c} \\

\textsf{On rationalising the denominator them}\\

 \rm{ \frac{1}{x}  =  \frac{1}{c \sqrt{b}  + 4} \times  \frac{c \sqrt{b} - 4 }{c \sqrt{b}  - 4}  } \\

 \rm{ \frac{1}{x}  = \frac{1(c \sqrt{b}  - 4)}{(c \sqrt{b}  + 4)(c \sqrt{b} - 4) }  } \\

 \rm{ \frac{1}{x}  =  \frac{c \sqrt{b}  - 4}{(c \sqrt{b} + 4)(c \sqrt{b} - 4) } } \\

\textsf{Comparing the given expression in denominator with } \\

\textsf{(a+b) (a - b), we get} \\

\textsf{a = c√b and b = 4.} \\

\textsf{Now using, (a + b)(a - b²) = a² - b², we get} \\

\rm{ \frac{1}{x}  = \frac{c \sqrt{b}  - 4}{(c \sqrt{b}  {)}^{2}  - (4 {)}^{2} } } \\

\rm{ \frac{1}{x}  = \frac{c \sqrt{b}  - 4}{b {c}^{2} - 16 } } \\

\textsf{Now,adding both values x and 1/x} \\

 \rm{ \therefore \: x +  \frac{1}{ x}  = c \sqrt{b} + 4 +  \frac{c \sqrt{b} - 4 }{b {c}^{2}  - 16}  } \\

 \rm{   x +  \frac{1}{ x}  = \frac{(c \sqrt{b} + 4)(b {c}^{2} - 16)+c \sqrt{b} - 4   }{b {c}^{2} - 16 }  } \\

\rm{   x +  \frac{1}{ x}  =  \frac{ {c}^{3}b \sqrt{b} - 15c \sqrt{b}  + 4b {c}^{2}  - 68 }{b {c}^{2} - 16 } } \\

\rm{   \underline{Hence,  \: the  \: value  \: of \:  x +  \frac{1}{ x}   \: is  \:  \frac{ {c}^{3}b \sqrt{b} - 15c \sqrt{b}  + 4b {c}^{2}  - 68 }{b {c}^{2} - 16 } .}} \\

Similar questions