If x cos θ = 1 and tan θ = y find the value of x² –y²
Answers
Answered by
2
x cos θ = 1
x = sec θ
so x2-y2=
sec2θ-tan2θ=1
x = sec θ
so x2-y2=
sec2θ-tan2θ=1
Answered by
7
heya !!!
it is given
xcos¢=1
=)x=1/cos¢-------------1)
again ,given..
tan¢=y-----------------2)
now we will be proove it.
since,,,x^2-y^2
=)1/cos¢-(tan¢)^2【from 1)and 2)】
=)1/cos^2¢-sin^2¢/cos^2¢
=)1-sin^2¢/cos^2¢ 【1-sin^2¢=cos^2¢】
=)cos^2¢/cos^2¢
=)1 Ans..
hope it help
@rajukumar☺☺☺☺
it is given
xcos¢=1
=)x=1/cos¢-------------1)
again ,given..
tan¢=y-----------------2)
now we will be proove it.
since,,,x^2-y^2
=)1/cos¢-(tan¢)^2【from 1)and 2)】
=)1/cos^2¢-sin^2¢/cos^2¢
=)1-sin^2¢/cos^2¢ 【1-sin^2¢=cos^2¢】
=)cos^2¢/cos^2¢
=)1 Ans..
hope it help
@rajukumar☺☺☺☺
Similar questions