If x = cos 1° cos 2° cos 3° …. cos 89° and y = cos 2° cos 6° cos 10° … cos 86° and , where a and b are co-prime, then find . A+b/5
Answers
Answer:
If x=cos1cos2cos3..cos89 and y=cos2cos6cos10…cos86, then what is the nearest integer to 2/7log (base2) (y/x)?
Data transfer seems difficult? Make it a seamless task!
Given,
x=cos(1)cos(2)cos(3)…cos(87)cos(88)cos(89)
and y=cos(2)cos(6)cos(10)…cos(82)cos(86)
As we know,
cos(A)cos(B)=cos(A+B)+cos(A−B)2
So,
cos(1)cos(89)=cos(89+1)+cos(89−1)2=cos(90)+cos(88)2
As, cos(90)=0
cos(1)cos(89)=cos(88)2
Similarly,
cos(2)cos(88)=cos(88+2)+cos(88−2)2=cos(86)2
and so on.
So,
x=cos(1)cos(2)cos(3)…cos(87)cos(88)cos(89)
=cos(88)cos(86)cos(84)…cos(4)cos(2)cos(45)244
=cos(88)cos(86)cos(84)…cos(4)cos(2)2442–√
[As cos(45)=12√ ]
Now,
cos(2)cos(88)=cos(86)2 [Similar analogy as above.]
So,
x=cos(88)cos(86)cos(84)…cos(4)cos(2)2442–√
=cos(86)cos(82)cos(78)…cos(6)cos(2)2662–√
=y2662–√
=y266+12
=y21332
So,
2log2(yx)7
=2log2(21332)7
=2×133)7×2
=19