Math, asked by thakursiddhant357, 18 hours ago

if x cos a=8 and 15cosec a=8sec a then the value of x is
a) 20 b)16 c)17 d)13​

Answers

Answered by amansingh2492006
39

Answer:

CosA=8/17

Third side=√17^2–8^2=√289–64=√225=15

CosecA=17/15

15cosec A=15×17/15=17

SecB=17/15

8 secB=8×17/15=126/15

17–126/15=(255–126)/15=12915

Answered by pulakmath007
69

SOLUTION

GIVEN

\displaystyle\sf x \cos A = 8 \:  \: and \:  \: 15 cosec A = 8 \sec A

TO CHOOSE THE CORRECT OPTION

The value of x

a) 20

b) 16

c) 17

d) 13

EVALUATION

\displaystyle\sf x \cos A = 8 \:  \:  \:  \:

\displaystyle\sf  \cos A =  \frac{8}{x}  \:  \:  \:  \:  -  -  -  - (1)

Again

\displaystyle\sf 15 cosec A = 8 \sec A

\displaystyle\sf  \implies \:  \frac{15}{ \sin A}  =  \frac{8}{ \cos A}

\displaystyle\sf  \implies \:    \frac{\sin A}{ \cos A}  =  \frac{15}{8}

\displaystyle\sf  \implies \:    \tan A  =  \frac{15}{8}

\displaystyle\sf  \implies  {\tan}^{2}  A  =  \frac{225}{64}

\displaystyle\sf  \implies  1 + {\tan}^{2}  A  =  1 + \frac{225}{64}

\displaystyle\sf  \implies  {\sec}^{2}  A  =  \frac{64 + 225}{64}

\displaystyle\sf  \implies  {\sec}^{2}  A  =  \frac{289}{64}

\displaystyle\sf  \implies  \sec  A  =  \frac{17}{8}

\displaystyle\sf  \implies  \cos  A  =  \frac{8}{17}

\displaystyle\sf  \implies   \frac{8}{x   }=  \frac{8}{17}

\displaystyle\sf  \implies   x = 17

So the value of x = 17

FINAL ANSWER

Hence the the option is c) 17

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions