Math, asked by anshulsharma60171, 9 months ago

If x cosθ =a and y = a tanθ, then prove that x2–y2=a2

Answers

Answered by Anonymous
4

Step-by-step explanation:

Given,

x \cos \theta = a

and

y = a \tan \theta

To prove

 {x}^{2}  -  {y}^{2}  =  {a}^{2}

Formula to be used

 \cos \theta =  \frac{1}{ \sec \theta}  \\  \implies \frac{1}{ \cos \theta}  =  \sec \theta

and

 \sec ^{2}  \theta  = {tan}^{2}  \theta + 1 \\  \implies \sec^{2}  \theta  -   \tan^{2}  \theta = 1

Now from the given data we have

x \cos \theta = a \\  \implies x  = \frac{a}{ \cos \theta}  \\  \implies   x = a \sec \theta \\  \implies x ^{2}  =  {a}^{2} \sec ^{2}  \theta

and

y = a \tan \theta \\  \implies  {y}^{2}  =  {a}^{2}  \tan ^{2}  \theta

Now LHS

 \implies {x}^{2}  -  {y}^{2}   =  {a}^{2}  \sec ^{2}  \theta -  {a}^{2}  \tan ^{2}  \theta \\   \implies {x}^{2}    -   {y}^{2} =  {a}^{2} ( \sec ^{2}  \theta -  \tan ^{2}  \theta) \\  \implies {x}^{2}  -  {y}^{2}  =  {a}^{2}

Hence \: proved

Answered by silentlover45
0

Solutions:

Given

x cos(theta)=a

and

y = S tan(theta)

x² - y² = a²

cos(theta) = 1/sec(theta)

1/cos(theta) = sec(theta)

sec²(theta)=tan²(theta) + 1

sec²(theta)-tan²(theta) = 1

x cos(theta) = a

x = a/cos(theta)

x = a sec(theta)

x² = a² sec²(theta)

y =a tan(theta)

y²= a tan2(theta)

silentlover45.❤️

Similar questions