if x cos theta = a and y = a tan theta, then prove that x2- y2 = a2
aryansharma96651:
what is theta
Answers
Answered by
7
Given that
xcosθ = a and y = atanθ
So x = asecθ and y = atanθ ...(1) [ since cosθ = 1/secθ ]
So x² - y² = (asecθ)²- (atanθ)²
⇒ x² - y² = a²sec²θ - a²tan²θ
⇒ x² - y² = a²(sec²θ - tan²θ)
⇒ x² - y² = a² [ since sec²θ - tan²θ = 1 ]
Hence proved.
Answered by
3
Given that
Let us assume that theta = A
a=x cosA and y = a tanA
So x = a secA and y = a tanA ...(1) [ since cosA = 1/secA ]
So x² - y² = (a secA)²- (a tanA)²
⇒ x² - y² = a²sec²A - a²tan²A
⇒ x² - y² = a²(sec²A - tan²A)
⇒ x² - y² = a² [ since sec²A - tan²A = 1 ]
Hence proved.
Similar questions