Math, asked by HannanM, 1 year ago

if x cos theta = a and y = a tan theta, then prove that x2- y2 = a2


aryansharma96651: what is theta
aryansharma96651: tell fast
HannanM: theta is undefined angle's value

Answers

Answered by DerrickStalvey
7

Given that

xcosθ = a    and y = atanθ

So x = asecθ  and y = atanθ           ...(1)   [ since cosθ = 1/secθ ]

So x² - y² =  (asecθ)²- (atanθ)²

⇒ x² - y² =  a²sec²θ - a²tan²θ

⇒ x² - y² =  a²(sec²θ - tan²θ)

⇒ x² - y² =  a²                                            [ since sec²θ - tan²θ = 1 ]

Hence proved.

Answered by aryansharma96651
3

Given that

Let us assume that theta = A

a=x cosA     and y = a tanA


So x = a secA  and y = a tanA           ...(1)   [ since cosA = 1/secA ]


So x² - y² =  (a secA)²- (a tanA)²


⇒ x² - y² =  a²sec²A - a²tan²A


⇒ x² - y² =  a²(sec²A - tan²A)


⇒ x² - y² =  a²                                            [ since sec²A - tan²A = 1 ]


                            Hence proved.


Similar questions