.If (x cos theta)/(a)+(y sin theta)/(b)=1 and (ax)/(cos theta)-(by)/(sin theta)=a^(2)-b^(2) prove that (x^(2))/(a^(2))+(y^(2))/(b^(2))=1
Answers
Given: (x cos theta)/(a)+(y sin theta)/(b) = 1 and (ax)/(cos theta)-(by)/(sin theta)=a²-b²
To find: Prove that (x²)/(a²) + (y²)/(b²) = 1
Solution:
- Now we have given (x cos theta)/(a)+(y sin theta)/(b) = 1
- Consider:
x / a cos theta = y / b sin theta = k
x = ak cos theta ................(i)
y = bk sin theta................(ii)
- Now we have :
(ax)/(cos theta)-(by)/(sin theta) = a²-b²
- Consider LHS, we have:
(ax)/(cos theta)-(by)/(sin theta)
- Putting (i) and (ii), we get:
(a x ak cos theta)/(cos theta)-(b x bk sin theta)/(sin theta)
a²k - b²k
(a² - b²)k
- Now RHS is a² - b².
- Comparing both, we get:
(a² - b²)k = a² - b²
k = 1.
- Putting k in (i) and (ii), we get:
x = ak cos theta = a cos theta
x/a = cos theta
y = bk sin theta = b sin theta
y/b = sin theta
- Now Squaring both terms and adding them, we get:
(x/a)² + (y/b)² = sin² theta + cos² theta
(x/a)² + (y/b)² = 1
- Hence proved.
Answer:
So we have proved that (x/a)² + (y/b)² = 1
Answer:
Step-by-step explanation: