Math, asked by shubhamproject2020, 7 months ago

if x= cos theta and y= sin theta then find dy/dx​

Answers

Answered by ravi200765
2

Step-by-step explanation:

dy/dx=dy/dtheta/(dx/dtheta)=cos(th)/(-sin(th))=-cot(th) which is also -x/y, since x^2+y^2=cos^2+sin^2=1 and differentiation gives 2*x*dx+2*y*dy=0 so dy/dx=-x/y.

Answered by swethassynergy
0

The value of \frac{dy}{dy} \   is \ \frac{x}{(-y)} .

Step-by-step explanation:

Given:

x=cos\theta

y= sin\theta

To Find:

The value of \frac{dy}{dx}.

Formula Use:

\frac{dy}{dx} denotes the differentiation of y with respect to the variable x.

x=cos\theta

then \frac{dx}{d\theta} =  -sin\theta     --------------------------------------- formula no .01

y= sin\theta

then \frac{dy}{d\theta} = cos \theta   -----------------------------------------  formula no.02

\frac{dy}{dx} =\frac{(\frac{dy}{d\theta}) }{(\frac{dx}{d\theta}) }       ------------------------------------------------ formula no.03

Solution:

As given -    x=cos\theta

Applying formula no.01

   \frac{dx}{d\theta} =  -sin\theta    ---------    equation no.01

As given-    y= sin\theta

\frac{dy}{d\theta} = cos \theta           ------------ equation no.02

To find  - the value of \frac{dy}{dx}.

Applying formula no.03. and putting the value of \frac{dy}{d\theta}   and \frac{dx}{d\theta}.

\frac{dy}{dx} =\frac{(\frac{dy}{d\theta}) }{(\frac{dx}{d\theta}) }

    = \frac{cos\theta}{(-sin\theta)}

\frac{dy}{dy} = \frac{cos\theta}{(-sin\theta)}

Putting the value of y= sin\theta and x=cos\theta , we get.

\frac{dy}{dy} = \frac{x}{(-y)}

Thus, The value of   \frac{dy}{dy} \   is \ \frac{x}{(-y)} .

Similar questions