Math, asked by abbu30032004, 7 months ago

If x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)xcosθ=ycos(θ+ 3 2π ​ )=zcos(θ+ 3 4π ​ ) then x y+y z+z xxy+yz+zx equals to

Answers

Answered by swetha12321
0
What is this question
Answered by pulakmath007
51

SOLUTION

GIVEN

 \displaystyle \sf{}x \cos \theta = y \cos  \bigg(\theta  +  \frac{2\pi}{3} \bigg) =z \cos  \bigg(\theta  +  \frac{4\pi}{3} \bigg)

TO DETERMINE

 \sf{}xy + yz + zx

EVALUATION

Let

 \displaystyle \sf{}x \cos \theta = y \cos  \bigg(\theta  +  \frac{2\pi}{3} \bigg) =z \cos  \bigg(\theta  +  \frac{4\pi}{3} \bigg) =  \frac{1}{k} (say)

 \displaystyle \sf{} \frac{1}{x}  = k \cos \theta

 \displaystyle \sf{} \frac{1}{y}  = k \cos  \bigg(\theta  +  \frac{2\pi}{3} \bigg)

 \displaystyle \sf{} \frac{1}{z}  = k\cos  \bigg(\theta  +  \frac{4\pi}{3} \bigg)

So

 \displaystyle \sf{} \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}

 \displaystyle \sf{} = k   \bigg(\cos \theta  +  \cos  \big(\theta  +  \frac{2\pi}{3} \big)  +  \cos  \big(\theta  +  \frac{4\pi}{3} \big)  \bigg)

 \displaystyle \sf{} = k  \cos \theta  +2k  \cos  (\theta  +  \pi )  .\cos    \frac{\pi}{3}

 \displaystyle \sf{} = k  \cos \theta   - 2k  \cos  \theta   . \frac{1}{2}

 \displaystyle \sf{} = k  \cos \theta   - k  \cos  \theta

 =  \sf{}0

So

 \displaystyle \sf{} \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}  = 0

 \implies  \displaystyle \sf{} \frac{yz + zx + xy}{xyz}   = 0

 \implies  \displaystyle \sf{} {yz + zx + xy}   = 0

 \implies  \sf{}xy + yz + zx = 0

FINAL ANSWER

 \boxed{  \sf{} \:  \: xy + yz + zx = 0 \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

In a triangle, prove that

(b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions