Math, asked by zohan9763, 1 year ago

If x cos theta=ycos(theta+(2pi/3))=zcos{theta+(4pi/3)}. find xy+yz+xz

Answers

Answered by pinquancaro
166

Let x \cos \theta = y \cos(\theta + \frac{2 \pi}{3})= z \cos(\theta + \frac{4 \pi}{3}) = \frac{1}{k}

Therefore, \frac{1}{k} = x \cos \theta , \frac{1}{k} = y \cos(\theta + \frac{2 \pi}{3}) and \frac{1}{k} = z \cos(\theta + \frac{4 \pi}{3})

So, \frac{1}{x} = k \cos \theta , k \cos(\theta + \frac{2 \pi}{3}) = \frac{1}{y} and \frac{1}{z} = k \cos(\theta + \frac{4 \pi}{3}).

Consider \frac{1}{x} + \frac{1}{y} + \frac{1}{z}

= k \cos \theta + k \cos(\theta+\frac{2 \pi}{3}) + k \cos(\theta+\frac{4 \pi}{3})

= k( \cos \theta + \cos(\theta+\frac{2 \pi}{3}) + \cos(\theta+\frac{4 \pi}{3}))

= k( \cos \theta + \cos(\theta+\frac{4 \pi}{3})+\cos(\theta+\frac{2 \pi}{3}))

By using the trigonometric identity

\cos A + \cos B = 2 \cos(\frac{A-B}{2}) \cos(\frac{A+B}{2})

= k(2 \cos(\frac{2 \pi}{3}) \cos(\frac{\theta+2 \pi}{3}) + \cos(\frac{\theta+2 \pi}{3}))

= k(2 \cos(\frac{\pi- \pi}{3}) \cos(\frac{\theta+2 \pi}{3}) + \cos(\frac{\theta+2 \pi}{3}))

= k(-2 \cos\frac{\pi}{3} \cos(\frac{\theta+2 \pi}{3}) + \cos(\frac{\theta+2 \pi}{3}))

= k(-2 \times \frac{1}{2} \cos(\frac{\theta+2 \pi}{3}) + \cos(\frac{\theta+2 \pi}{3}))

= k(-\cos(\frac{\theta+2 \pi}{3}) + \cos(\frac{\theta+2 \pi}{3}))

= 0

Therefore,

\frac{1}{x} + \frac{1}{y} + \frac{1}{z}=0

Taking LCM as xyz

\frac{yz+xz+xy}{xyz} = 0

So, xy+yz+xz = 0

Hence, proved.

Answered by manojkummar39
56

hope this will help u

Attachments:
Similar questions