Math, asked by abhay22762, 2 months ago

If x cos y + y sin x =1, then find dy
/dx​

Answers

Answered by ridhya77677
2

x \cos(y)  + y \sin(x)  = 1 \\  \frac{dy}{dx}  =\cos(y) \times   \frac{dy}{dx} - x \sin(y)   +   \sin(x)  \times  \frac{dy}{dx}  + y \cos(x)  \\  =  >  \frac{dy}{dx}   =  \frac{dy}{dx} ( \cos(y)  +  \sin(x) ) + y \cos(x)  - x \sin(y)  \\   =  >  \frac{dy}{dx} (1 -  \cos(y)  -  \sin(x)  = y \cos(x)  - x \sin(y) \\  \frac{dy}{dx}  =  \frac{y \cos(x)  - x \sin(y)}{1 -  \cos(y)  -  \sin(x)}

Similar questions