If x cosA+y sin A=m and x sin A-y cos A=n then prove that square +y square =m square +n square
Answers
Answered by
2
Step-by-step explanation:
ⓅⓁⒺⒶⓈⒺ ⓂⒶⓇⓀ ⒽⒶⓈ ⒷⓇⒶⒾⓃⓁⒾⒺⓈⓉ ⒶⓃⓈⓌⒺⓇ(♥_♥)(❁´◡`❁)(❁´◡`❁)(♥_♥)(❁´◡`❁)(♥_♥)
Attachments:
Answered by
2
Given:
xcosA + ysinA = m
xsinA - ycosA = n
To find:
x² + y = m² + n²
Identities used:
(a + b)² = a² + b² + 2ab
(a - b)² = a² + b² - 2ab
sin²A + cos²A = 1
Solution:
RHS = m² + n²
= (xcosA + ysinA)² + (xsinA - ycosA)²
= x²cos²A + y²sinA² + 2xycosAsinA + x²sin²A + y²cosA² - 2xycosAsinA
= x²sin²A + x²cos²A + y²sinA² + y²cosA² + 2xycosAsinA - 2xycosAsinA
= x²(sin²A + cos²A) + y²(sinA² + cosA²)
= x²(1) + y²(1)
= x² + y²
Hence proved.
Similar questions