If x cosB - COSA = 0 and y sinB - COSA = 0, then
the value of cos2A will be
Answers
Answered by
0
Answer:
ANSWER
Given cosA+cosB+cosC=0-----equ(1)
We know x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−xz−yz).
Let x=cosA,y=cosB and z=cosC
cosA+cosB+cosC=x+y+z=0 , so this identity becomes
x3+y3+z3−3xyz=0
x3+y3+z3=3xyz
cos3(A)+cos3(B)+cos3(C)=3cosAcosBcosC
Now, cos(3A)=cos(2A+A)
=cos(2A)cosA−sin(2A)sinA
= (cos2(A)−sin2(A))cosA−(2sinAcosA)sinA
= cos3(A)−3cosAsin2(A)
=cos3(
Step-by-step explanation:
I think this is the answrr
Similar questions