Math, asked by nirajkumar63458, 7 months ago

If x= cosec A+ cos A and y cosec A- cos A then prove that



2 बाय एक्स प्लस वाई का होल स्क्वायर प्लस एक्स माइनस वन बाय टू का होल स्क्वायर इक्वल टू वन ​

Answers

Answered by BrainlyIAS
62

Correct Question :

If x = csc A +cos A and y = csc A - cos A then prove that

  • (2/x+y)²+ (x-y/2)²- 1 =0

Solution :

x = csc A + cos A

y = csc A - cos A

════════════════════════════

➠ x + y = csc A + cos A + csc A - cos A

➠ x + y = 2 csc A

\to \sf \dfrac{2}{x+y}=\dfrac{2}{2\ csc\ A}\\\\\to \sf \dfrac{2}{x-y} =\dfrac{1}{csc\ A}\\\\\to \sf{\dfrac{2}{x+y}=sin\ A}\\\\\to \sf{\bf{\bigg(\dfrac{2}{x+y}\bigg)^2=sin^2A}}

════════════════════════════

➠ x - y = csc A + cos A - csc A + cos A

➠ x - y = 2 cos A

\to \sf \dfrac{x-y}{2}=\dfrac{2\ cos\ A}{2}\\\\\to \sf \dfrac{x-y}{2}=cos\ A\\\\\to \sf{\bf \bigg(\dfrac{x-y}{2}\bigg)^2=cos^2A}

════════════════════════════

LHS

\\ \to \sf \bigg(\dfrac{2}{x+y}\bigg)^2+\bigg(\dfrac{x-y}{2}\bigg)^2-1\\

\\ \to \sf \sf{\bf{sin^2A+cos^2A}}-1\\

  • From Trigonometric identities ,
  • \sf{\bf{sin^2x+cos^2x=1}}

where ,

  • x is any function

\\ \to \sf 1 - 1\\

\\ \to \sf\ \;  0\\

RHS

Hence Proved

Answered by Anonymous
313

\pink\bigstarQUESTION:-

If x=cosec A+cos A and y=cosec A -cos A then prove that

________

 \sf \bigg( \dfrac{2}{x + y} \bigg)^{2}+  \bigg(\dfrac{x - y}{2} \bigg)^{2}  = 1

\blue\bigstarSOLUTION:-

We have

⠀⠀⠀

 \sf LHS =   {\bigg(\dfrac{2}{x + y}  \bigg)}^{2} + {\bigg( \dfrac{x - y}{2}  \bigg)}^{2}

Substituting the value of x and y in above we get

 \sf  {\bigg(\dfrac{2}{x + y} \bigg)}^{2} =  \bigg \{\dfrac{2}{(cosecA + cosA) + (cosecA - cosA)} \bigg \}^{2}

 \sf =  \bigg( \dfrac{ \cancel{2}}{ \cancel{2}cosecA} \bigg)^{2}

 \sf =   \bigg(\dfrac{1}{cosecA}\bigg)^{2}

 \sf \pink{ = sin^{2} A}.....(1) \:  \:  \:  \:  \bigg|  \longrightarrow\dfrac{1}{cosecA= sinA}  \bigg|

And

⠀⠀

 \sf   \bigg(\dfrac{x  - y }{2}  \bigg)^{2}  =  \bigg \{ \dfrac{(cosecA + cosA) -( cosecA - cosA)}{2}  \bigg \}^{2}

 \sf = \bigg(\dfrac{ \cancel{2}cosA}{ \cancel{2}}  \bigg)^{2}

 \sf \blue{ = {cos}^{2} A} ....(2)

⠀⠀⠀

Now LHS

⠀⠀⠀

 \sf  =   {\bigg(\dfrac{2}{x + y}  \bigg)}^{2}   +   {\bigg( \dfrac{x - y}{2}  \bigg)}^{2}

 \sf = sin^{2}A + cos^{2}A \:  \:  \: (from \: 1 \: and \: 2)

 = 1

Hence,Proved

__________

Similar questions