Math, asked by Anonymous, 10 months ago

If x = cosec(θ) - sin(θ) and, y = sec(θ) - cos(θ) then find the Value of :
x²y²(x² + y² + 3)

- SSC CGL Tier I​

Answers

Answered by Anonymous
5

Answer:

1

Step-by-step explanation:

x = cosec∅ - sin∅ and y = sec∅ - cos∅

We have to find the value of x²y²(x² + y² + 3)

=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[(cosec∅ - sin∅)² + (sec∅ - cos∅)² + 3]

=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[cosec²∅ + sin²∅ - 2cosecsin∅ + sec²∅ + cos²∅ - 2sec∅cos∅ + 3]

=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[cosec²∅ + 1 - 2 + sec²∅ - 2 + 3]

=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[cosec²∅ + sec²∅]

=> (1/sin∅ - sin∅)²(1/cos∅ - cos∅)²[1/sin²∅ + 1/cos²∅]

=> (1 - sin²∅/sin∅)²(1 - cos²∅/cos∅)²[sin²∅ + cos²∅/sin²∅cos²∅]

=> (cos²∅/sin∅)²(sin²∅/cos∅)²[1/sin²∅cos²∅]

=> (cos⁴∅/sin⁴∅)(sin²∅/cos²∅)(1/sin²∅cos²∅)

=> (sin²∅cos²∅/sin²∅cos²∅)

=> 1

Hence, the value of x²y²(x² + y² + 3) = 1.

#Hope my answer helped you!

Answered by Anonymous
103

AnswEr :

\bold{Given} \begin{cases} \sf{x= \csc( \theta)  -  \sin( \theta) } \\ \sf{y=} \sec( \theta)  -  \cos( \theta)   \\  \sf{ To \: Find :{x}^{2} {y}^{2}( {x}^{2}   +  {y}^{2}  + 3) }\end{cases}

⇝ x = cosec(θ) - sin(θ)

⇝ x = 1 / sin(θ) - sin(θ)

⇝ x = (1 - sin²(θ)) / sin(θ)

x = cos²(θ) / sin(θ) —eq. ( I )

⇝ y = sec(θ) - cos(θ)

⇝ y = 1 / cos(θ) - cos(θ)

⇝ y = (1 - cos²(θ)) / cos(θ)

y = sin²(θ) / cos(θ) —eq. ( II )

Now let's Head to the Question :

\Longrightarrow \sf {x}^{2}  {y}^{2} ( {x}^{2}  +  {y}^{2}  + 3)

\Longrightarrow \sf { \bigg( \dfrac{ \cos ^{2} ( \theta) }{ \sin(\theta) } \bigg) }^{2}  { \bigg( \dfrac{ \sin^{2} ( \theta) }{ \cos(\theta) } \bigg) }^{2}   \bigg(\bigg( \dfrac{ \cos ^{2} ( \theta) }{ \sin(\theta) } \bigg)^{2} +  \bigg( \dfrac{ \sin^{2} ( \theta) }{ \cos(\theta) } \bigg)^{2}  + 3 \bigg)

\Longrightarrow \sf { \dfrac{ \cancel{ \cos ^{4} ( \theta) }}{ \cancel{\sin^{2} (\theta)} }} \times  { \dfrac{ \cancel{\sin^{4} ( \theta)} }{ \cancel{\cos ^{2} (\theta)} }} \bigg(\dfrac{ \cos ^{4} ( \theta) }{ \sin^{2} (\theta) } +  \dfrac{ \sin^{4} ( \theta) }{ \cos^{2} (\theta) } + 3 \bigg)

\Longrightarrow \sf  \cancel{\cos ^{2} ( \theta) \sin ^{2} ( \theta) }\times  \bigg(\dfrac{ \cos ^{6} ( \theta) + \sin^{6}( \theta)  + 3 \sin ^{2}( \theta) \cos ^{2} ( \theta) }{  \cancel{\sin^{2}( \theta)  \cos^{2} ( \theta)}} \bigg)

\Longrightarrow \sf  \cos ^{6} ( \theta) + \sin^{6}( \theta)  + 3 \sin ^{2}( \theta) \cos ^{2} ( \theta) \times (1)

⠀⠀⠀⋆ (sin²(θ) + cos²(θ)) = 1

\Longrightarrow \sf  (\cos ^{2} ( \theta))^{3}  + (\sin^{2}( \theta) ) ^{3}  + 3 \sin ^{2}( \theta) \cos ^{2} ( \theta) \times (\sin^{2}( \theta) + \cos ^{2} ( \theta))

⠀⠀⠀⋆ (a + b)³ = a³ + b³ + 3ab(a + b)

\Longrightarrow \sf  ((\cos ^{2} ( \theta)+ (\sin^{2}( \theta) ) ^{3}

\Longrightarrow \sf  (1) ^{3}

\Longrightarrow \large \sf  1

 \therefore \large \boxed{ \sf{x}^{2}  {y}^{2} ( {x}^{2}  +  {y}^{2}  + 3) = 1}

Similar questions