If x = cosec(θ) - sin(θ) and, y = sec(θ) - cos(θ) then find the Value of :
x²y²(x² + y² + 3)
- SSC CGL Tier I
Answers
Answer:
1
Step-by-step explanation:
x = cosec∅ - sin∅ and y = sec∅ - cos∅
We have to find the value of x²y²(x² + y² + 3)
=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[(cosec∅ - sin∅)² + (sec∅ - cos∅)² + 3]
=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[cosec²∅ + sin²∅ - 2cosecsin∅ + sec²∅ + cos²∅ - 2sec∅cos∅ + 3]
=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[cosec²∅ + 1 - 2 + sec²∅ - 2 + 3]
=> (cosec∅ - sin∅)²(sec∅ - cos∅)²[cosec²∅ + sec²∅]
=> (1/sin∅ - sin∅)²(1/cos∅ - cos∅)²[1/sin²∅ + 1/cos²∅]
=> (1 - sin²∅/sin∅)²(1 - cos²∅/cos∅)²[sin²∅ + cos²∅/sin²∅cos²∅]
=> (cos²∅/sin∅)²(sin²∅/cos∅)²[1/sin²∅cos²∅]
=> (cos⁴∅/sin⁴∅)(sin²∅/cos²∅)(1/sin²∅cos²∅)
=> (sin²∅cos²∅/sin²∅cos²∅)
=> 1
Hence, the value of x²y²(x² + y² + 3) = 1.
#Hope my answer helped you!
AnswEr :
⇝ x = cosec(θ) - sin(θ)
⇝ x = 1 / sin(θ) - sin(θ)
⇝ x = (1 - sin²(θ)) / sin(θ)
⇝ x = cos²(θ) / sin(θ) —eq. ( I )
⠀
⇝ y = sec(θ) - cos(θ)
⇝ y = 1 / cos(θ) - cos(θ)
⇝ y = (1 - cos²(θ)) / cos(θ)
⇝ y = sin²(θ) / cos(θ) —eq. ( II )
• Now let's Head to the Question :
⠀⠀⠀⋆ (sin²(θ) + cos²(θ)) = 1
⠀⠀⠀⋆ (a + b)³ = a³ + b³ + 3ab(a + b)
⠀