if x = cosec theta and y = b sec theta prove that a^2/x^2 +x^2/y^2 = 1
Answers
Answered by
0
Answer:
b²x² - a²y² = a²b² if x =a secθ y= b tanθ or if x =aCosecθ y= bCotθ
Step-by-step explanation:
to be proved
b²x² - a²y² = a²b²
Case i)
if x =a secθ y= b tanθ
LHS = b²x² - a²y²
= b²(a secθ)² - a²(btanθ)²
= b²a² sec²θ - a²b²tan²θ
= a²b²( sec²θ - tan²θ)
as we know that sec²θ - tan²θ = 1
= a²b²
= RHS
Case iI)
if x =aCosecθ y= b Cotθ
LHS = b²x² - a²y²
= b²(aCosecθ)² - a²(bCotθ)²
= b²a²Cosec²θ - a²b²Cot²θ
= a²b²( Cosec²θ - Cot²θ)
as we know that Cosec²θ - Cot²θ = 1
= a²b²
= RHS
Similar questions