Math, asked by deepakkumar92016, 10 months ago

if x cosec theta=r, y sec theta=p and r sin^2theta+p cos^2theta=z then which of the following relations is correct​

Answers

Answered by MaheswariS
6

\textbf{Given:}

x\;cosec\theta=r,\;\;y\;sec\theta=p

\implies\;cosec\theta=\frac{r}{x},\;\;sec\theta=\frac{p}{y}

\text{Taking reciprocals on bothsides, we get}

sin\theta=\frac{x}{r},\;\;cos\theta=\frac{y}{p}

\text{Now,}

r\;sin^2\theta+p\;cos^2\theta=z

\impliesr(\frac{x^2}{r^2})+p(\frac{y^2}{p^2})=z

\implies\boxed{\bf\frac{x^2}{r}+\frac{y^2}{p}=z}

\text{which is the required relation}

Answered by codiepienagoya
7

Given:

\bold{ r =x \ cosec \theta}\\\\\bold{p= y \sec \theta}\\\\\bold{z= r\sin^2 \theta +p \cos^2 \theta}

To prove:

Find relation=?

Solution:

In the given question there is no relation choices were given. so, the relation to this question can be defined as follows:

\Rightarrow z= r\sin^2 \theta +p \cos^2 \theta

put the value of r and z in the above equation:

\Rightarrow z= (x \ cosec \theta)\sin^2 \theta +(y \sec \theta) \cos^2 \theta\\\\\Rightarrow z= (x \times \frac{1}{\sin \theta})\times \sin^2 \theta +(y \times \frac{1}{\cos \theta})\times \cos^2 \theta\\\\\Rightarrow z= x \times \frac{1}{\sin \theta}\times \sin^2 \theta +y \times \frac{1}{\cos \theta}\times \cos^2 \theta\\\\\Rightarrow \boxed{z= x \sin \theta +y \cos \theta}\\\\

                                                             OR

\to r =x \ cosec \theta....(i)\\\\ \to  p= y \sec \theta.... (ii) \\\\ \to  z= r\sin^2 \theta +p \cos^2 \theta....(iii)

Solve the equation (i), (ii) and put the value in equation (iii) :

\to  r =x \frac{1}{\sin \theta}\\\\  \to  \sin \theta = \frac{x}{r} \\\\ \to  p= y \frac{1}{\cos \theta}\\\\ \to  \cos \theta = \frac{y}{p} \\\\

Equation (iii):

\to z= r\sin^2 \theta +p \cos^2 \theta\\\\\to z= r\times (\frac{x}{r})^2 +p \times (\frac{y}{p})^2\\\\\to z= r\times \frac{x^2}{r^2} +p \times \frac{y^2}{p^2}\\\\\to \boxed{\boxed{z= \frac{x^2}{r} +\frac{y^2}{p}}}\\\\

Similar questions