If x = cosecA+cos A and y = cosecA-cosA then prove that ( 2/x+y)^2 + ( x - y/2)^2 -1 =0
Answers
Answered by
4
x = cosecA+cosA
y = cosecA-cosA
To prove: (2/x+y)^2 + (x-y/2)^2 - 1 =0
x+y = 2cosecA
x-y= 2cosA
Thus (2/2cosecA)^2 + (2cosA/2) - 1
= (1/cosecA)^2 + (cos A)^2 - 1
=sin^2 A + cos^2 A - 1
= 1 - 1
= 0
Thus, LHS=RHS
{ Points to remember:
sin = 1/cosec
sin^2 + cos^2 = 1 }
Similar questions