Math, asked by puja9713, 9 months ago

if x= cosec@[email protected] y=sec@-cos@ then prove that x⅔+y⅔=(xy)^-⅔​

Answers

Answered by waqarsd
7

Step-by-step explanation:

x = cosec \theta - sin\theta \\  \\ y = sec\theta - cos\theta \\  \\ x =  \frac{1}{sin\theta}  - sin\theta \\  \\ x =  \frac{1 -  {sin}^{2} \theta}{sin\theta } \\  \\ x =  \frac{ {cos}^{2}\theta }{sin\theta}  \\  \\ x =  \frac{ {cos}^{3} \theta}{sin\theta \: cos\theta}  \\  \\  \\  \\ y =  \frac{1}{cos\theta}  - cos\theta \\  \\ y =  \frac{1 -  {cos}^{2} \theta}{cos\theta}  \\  \\ y =   \frac{ {sin}^{2} \theta}{cos\theta}  \\  \\ y = \frac{ {sin}^{3}\theta }{sin\theta \: cos\theta}  \\  \\ xy = sin\theta \: cos\theta \\  \\ x =  \frac{ {cos}^{3}\theta }{xy}  \\  \\  {x}^{2} y =  {cos}^{3} \theta  \:  \:  \:  \:  \:  \:  \: eq1\\  \\ y =  \frac{ {sin}^{3} \theta}{xy}  \\  \\ x {y}^{2}  =  {sin}^{3} \theta  \:  \:  \:  \:  \:  \:  \: eq2\\  \\  {eq1}^{ \frac{2}{3} }  +  {eq2}^{\frac{2}{3} }  \\  \\(  {x}^{2} y) {}^{ \frac{2}{3} }  + (x {y}^{2} ) {}^{ \frac{2}{3} }  =  {cos}^{2} \theta +  {sin}^{2} \theta \\  \\ (  {x}^{2} y) {}^{ \frac{2}{3} }  + (x {y}^{2} ) {}^{ \frac{2}{3} }  =1 \\  \\ x {}^{ \frac{2}{3} } (xy) {}^{ \frac{2}{3} }  + y {}^{ \frac{2}{3} } (xy) {}^{ \frac{2}{3} }  = 1 \\  \\ (xy) {}^{ \frac{2}{3} } ( {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} } ) =1 \\  \\ {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} } = (xy) {}^{ -  \frac{2}{3} }  \\  \\

formulae \\  \\ sin \theta \: cosec\theta = 1 \\  \\ cos\theta \: sec\theta = 1 \\  \\  {cos}^{2} \theta +  {sin}^{2} \theta = 1 \\  \\

HOPE IT HELPS

Answered by Anonymous
3

Step-by-step explanation:

\begin{lgathered}x = cosec \theta - sin\theta \\ \\ y = sec\theta - cos\theta \\ \\ x = \frac{1}{sin\theta} - sin\theta \\ \\ x = \frac{1 - {sin}^{2} \theta}{sin\theta } \\ \\ x = \frac{ {cos}^{2}\theta }{sin\theta} \\ \\ x = \frac{ {cos}^{3} \theta}{sin\theta \: cos\theta} \\ \\ \\ \\ y = \frac{1}{cos\theta} - cos\theta \\ \\ y = \frac{1 - {cos}^{2} \theta}{cos\theta} \\ \\ y = \frac{ {sin}^{2} \theta}{cos\theta} \\ \\ y = \frac{ {sin}^{3}\theta }{sin\theta \: cos\theta} \\ \\ xy = sin\theta \: cos\theta \\ \\ x = \frac{ {cos}^{3}\theta }{xy} \\ \\ {x}^{2} y = {cos}^{3} \theta \: \: \: \: \: \: \: eq1\\ \\ y = \frac{ {sin}^{3} \theta}{xy} \\ \\ x {y}^{2} = {sin}^{3} \theta \: \: \: \: \: \: \: eq2\\ \\ {eq1}^{ \frac{2}{3} } + {eq2}^{\frac{2}{3} } \\ \\( {x}^{2} y) {}^{ \frac{2}{3} } + (x {y}^{2} ) {}^{ \frac{2}{3} } = {cos}^{2} \theta + {sin}^{2} \theta \\ \\ ( {x}^{2} y) {}^{ \frac{2}{3} } + (x {y}^{2} ) {}^{ \frac{2}{3} } =1 \\ \\ x {}^{ \frac{2}{3} } (xy) {}^{ \frac{2}{3} } + y {}^{ \frac{2}{3} } (xy) {}^{ \frac{2}{3} } = 1 \\ \\ (xy) {}^{ \frac{2}{3} } ( {x}^{ \frac{2}{3} } + {y}^{ \frac{2}{3} } ) =1 \\ \\ {x}^{ \frac{2}{3} } + {y}^{ \frac{2}{3} } = (xy) {}^{ - \frac{2}{3} } \\ \\\end{lgathered}

\begin{lgathered}formulae \\ \\ sin \theta \: cosec\theta = 1 \\ \\ cos\theta \: sec\theta = 1 \\ \\ {cos}^{2} \theta + {sin}^{2} \theta = 1 \\ \\\end{lgathered}

Similar questions