Math, asked by alhaji2146, 10 months ago

if X cosecteta=1 and y secteta=1 find x²+y²​

Answers

Answered by akashgupta221205
3

Answer:

given,X cosecA=1,and y secA=1

now,X=1/cosecA→X=sinA

And,y =1/secA→y=cosA

now,

x²+y²=sin²A+cos²A

=1

Answered by Sharad001
43

Question :-

 \sf{ \red{if }\: x \:  \csc \theta \:  = 1 \:  \: \green{ and} \: y \:  \sec   \theta = 1} \\ \sf{  \orange{then \: find \:}  {x}^{2}  +  {y}^{2} }

Answer :-

→ x ² + y ² = 1

Formula used :-

</p><p>  \red{\boxed{  \green\star}}\:  \sin  \theta =  \frac{1}{ \csc \:  \theta}  \\  \\  \green{ \boxed{\orange{ \star}}} \:  \cos \theta \:  =  \frac{1}{ \sec \theta}  \\  \\  \pink{ \boxed{ \green{ \star } }} \:   \: { \sin}^{2}  \theta \:  +  { \cos}^{2}  \theta \:  = 1

Solution :-

Given that

  \rightarrow \sf{x \:  \csc \theta \:  = 1} \\  \\  \rightarrow \sf{ \: x =  \frac{1}{ \csc \theta} } \\  \\  \rightarrow \sf{ x \:  =  \sin \theta} \\  \\  \bf{and }\:  \\  \:   \\  \rightarrow \sf{y \:  \sec \theta \:  = 1 }\\  \\  \rightarrow \sf{ y \:  =  \frac{1}{ \sec \theta} } \\  \\  \rightarrow \sf{y \:  =  \cos \theta}

Therefore ,

  \boxed{\implies} \:  \:  \:  \:  \:  \sf{ {x}^{2}  +  {y}^{2} } \\  \\ \boxed{ \implies} \:  \:  \:  \:   \sf{ { \sin}^{2}  \theta \:  +  { \cos }^{2}  \theta \:  = 1} \\  \\  \therefore \boxed{ \sf{ {x}^{2}  +  {y}^{2}  = 1}}

__________________________

Some trigonometric formula :-

 \star \:  { \sin}^{2}  \theta \:  +  { \cos}^{2}  \theta \:  = 1 \\  \\  \star \:  { \sec}^{2}  \theta \:   -  { \tan }^{2}  \theta \:  = 1 \\  \\  \star \:  { \csc }^{2} \theta -  { \cot }^{2}  \theta \:  = 1 \\  \\  \star \:  \sin \theta \:  =  \frac{1}{ \csc \theta}  \\  \\ \star \:  \tan  \theta =  \frac{1}{ \cot \theta}

__________________________

Similar questions