If x=cost(3 - 2 cos^2t) and y= sint(3 - 2 sin^2t) find dy/dx at t = pi / 4
Answers
Answered by
42
HELLO DEAR,
GIVEN:- x = cost(3 - 2cos²t)
so,
dx/dt = (-3sint + 6cos²t . sint)
dx/dt = [-3sint + 6sint(1 - sin²t)]
dx/dt = [-3sint + 6sint - 6sin³t]
dx/dt = [3sint - 6sin³t]--------( 1 )
also, y = sint(3 - 2sin²t)
similarly, dy/dt = (cost - 6sin²t . cost)
dy/dt = [3cost - 6(1 - cos²t) . cost)]
dy/dt = [3cost - 6cost + 6cos³t]
dy/dt = [6cos³t - 3cost]--------( 2 )
now, dy/dx = {dy/dt}/{dx/dt}
so,
HENCE, dy/dx = 0
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- x = cost(3 - 2cos²t)
so,
dx/dt = (-3sint + 6cos²t . sint)
dx/dt = [-3sint + 6sint(1 - sin²t)]
dx/dt = [-3sint + 6sint - 6sin³t]
dx/dt = [3sint - 6sin³t]--------( 1 )
also, y = sint(3 - 2sin²t)
similarly, dy/dt = (cost - 6sin²t . cost)
dy/dt = [3cost - 6(1 - cos²t) . cost)]
dy/dt = [3cost - 6cost + 6cos³t]
dy/dt = [6cos³t - 3cost]--------( 2 )
now, dy/dx = {dy/dt}/{dx/dt}
so,
HENCE, dy/dx = 0
I HOPE IT'S HELP YOU DEAR,
THANKS
Answered by
29
Answer:
1
Step-by-step explanation:
Hi,
Given x = cost(3 - 2cos²t)
=> x = (3 - 2cos²t)*cost
=> x = 3cost - cos³t
so,
dx/dt = -3sint + 6cos²t . sint
dx/dt = -3sint + 6sint(1 - sin²t)
dx/dt = -3sint + 6sint - 6sin³t
dx/dt = 3sint - 6sin³t
dx/dt = 3sint(1-2sin²t)--------( * )
Also, given
y = sint(3 - 2sin²t)
=> y = (3 - 2sin²t)sint
=> y = 3sint-2sin³t
So,
dy/dt = 3cost - 6sin²t. cost
dy/dt = 3cost(1-2sin²t)---------( ** )
But we Know that
dy/dx = {dy/dt}/{dx/dt}
=>from equations(*) and (**), we get
dy/dx = 3cost(1-2sin²t)/3sint(1-2sin²t)
=> dy/dx = cot(t),
Now at t = π/4
dy/dx = cot(π/4) = 1
Hope, it helped !
Similar questions