If x/costheta = y/cos(theta-2π/3) = z/cos(theta+2π/3),then x+y+z = ??
Answers
Answered by
11
Note : Theta is written as A.
Answer:
Required numeric value of x + y + z is 0.
Step-by-step explanation:
Given,
Let,
Thus,
- x = k cosA
- y = k cos
- z = k cos
Therefore,
= > x + y + z
= > k cosA + k cos + k cos
= > kcosA + cos + cos
From the properties of trigonometry :
- cos( A + B ) = cosAcosB + sinAsinB
- cos( A - B ) = cosAcosB - sinAsinB
- cos( A + B ) + cos( A - B ) = 2cosAcosB
Then, { continued }
= > kcosA + 2cosAcos
= > k[ cosA + 2cosA( - 1 / 2 ) ] { cos2π/3 = - 1 / 2 }
= > k[ cosA + cosA( - 1 / 2 x 2 ) ] { 2cosB = cos2B }
= > k[ cosA + cos( - A ) ]
= > k[ cosA - cosA ] { cos( - B ) = - cosB }
= > k( 0 )
= > 0
Hence the required numeric value of x + y + z is 0.
Similar questions