Math, asked by honey00766, 1 year ago

If x = Cot A + Cos A and y = Cot A - Cos A
Show that x2 - y2 = 4√xy​

Answers

Answered by dhruv0002
19

Step-by-step explanation:

For LHS,

Using identity-

(a+b)^2 = a^2 + b^2 + 2ab

(a+b)^2 = a^2 + b^2 - 2ab

x = Cot A + Cos A

x^2 = (cotA)^2 + (cosA)^2 + (2 cotA cosA)

y = Cot A - Cos A

y^2 = (cotA)^2 + (cosA)^2 - (2 cotA cosA)

x^2 - y^2 = (cotA)^2 + (cosA)^2 + (2 cotA cosA) - [(cotA)^2 + (cosA)^2 - (2 cotA cosA)]

x^2 - y^2 = (cotA)^2 + (cosA)^2 + (2 cotA cosA) - (cotA)^2 - (cosA)^2 + (2 cotA cosA)

x^2 - y^2 = (2 cotA cosA) + (2 cotA cosA)

x^2 - y^2 = 4 cotA cosA

Now for RHS,

xy = (Cot A + Cos A) (Cot A - Cos A)

xy = (cotA)^2 - (cosA)^2

As, cotA = cosA/SinA

xy = (cosA/sinA)^2 - (cosA)^2

xy = (cosA)^2 [(1/(sinA)^2) - 1]

xy = (cosA)^2 [(1 - (sinA)^2)/(sinA)^2]

xy = [(cosA)^2/ (sinA)^2] [1 - (sinA)^2]

xy = (cotA)^2 [1 - (sinA)^2]

As, (cosA)^2 + (sinA)^2 = 1

xy = (cotA)^2 (cosA)^2

√xy = √(cotA)^2 (cosA)^2

√xy = cotA cosA

Therefore,

x^2 - y^2 = 4 √xy

Hence Proved

Kindly mark the answer as brainliest, it will help :)

Answered by anshugaur2005
1

Answer:

akdkcnmcmckxkcm. ....

Similar questions