if x = cot a + cos a and y= cot a - cot a . show that x^2 - y^2 = 4√xy.
Answers
Answered by
16
Hi there!
Here's the answer:
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•
x = cot A + cos A
y = cot A - cos A
x - y = cot A + cos A - cot A + cos A
=> x - y = 2 cos A
x+y = cot A + cos A + cot A - cos A
=> x + y = 2 cot A
LHS = x² - y²
= (x+y)(x-y)
= (2cos A)(2 cot A)
= 4cos A cot A. --------(1)
RHS = 4√xy
xy= (cot A + cos A) (cot A - cos A)
= (cot² A - cos² A)
Take cos² A common and write cot² A = cos² A/sin² A
= cos² A[(1/sin² A) - 1]
= (cos²A/sin² A)[1 - sin² A]
= cot² A cos² A
√xy = cot A cos A
4√xy = 4cot A cos A -------(2)
From (1) & (2)
•°• LHS = RHS
Hence proved
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•
Here's the answer:
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•
x = cot A + cos A
y = cot A - cos A
x - y = cot A + cos A - cot A + cos A
=> x - y = 2 cos A
x+y = cot A + cos A + cot A - cos A
=> x + y = 2 cot A
LHS = x² - y²
= (x+y)(x-y)
= (2cos A)(2 cot A)
= 4cos A cot A. --------(1)
RHS = 4√xy
xy= (cot A + cos A) (cot A - cos A)
= (cot² A - cos² A)
Take cos² A common and write cot² A = cos² A/sin² A
= cos² A[(1/sin² A) - 1]
= (cos²A/sin² A)[1 - sin² A]
= cot² A cos² A
√xy = cot A cos A
4√xy = 4cot A cos A -------(2)
From (1) & (2)
•°• LHS = RHS
Hence proved
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°•
mnakum940:
wah Thank you so much
Similar questions
Political Science,
7 months ago
Hindi,
7 months ago
Chemistry,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago