Math, asked by diyadoly, 1 year ago

if x = cot theta + tan theta ; y= sec theta - cos theta eliminate theta from the equations

Answers

Answered by abhi178
46

Given : x = cotθ + tanθ and y = secθ - cosθ

we have to eliminate θ from the equations.

solution : x = cotθ + tanθ

⇒x = cosθ/sinθ + sinθ/cosθ

= (cos²θ + sin²θ)/sinθ cosθ

= 1/(sinθ cosθ) ........(1)

y = secθ - cosθ = 1/cosθ - cosθ

= (1 - cos²θ)/cosθ

= sin²θ/cosθ ........ (2)

dividing equation (2) by (1) we get,

y/x = [sin²θ/cosθ]/[1/sinθ cosθ]

⇒y/x = sin³θ

⇒sinθ = \sqrt[3]{\frac{y}{x}}

from equation (1) we get,

x = 1/(\sqrt[3]{\frac{y}{x}}cosθ)

⇒cosθ = 1/x\sqrt[3]{\frac{y}{x}}

⇒cosθ = 1/\sqrt[3]{x^2y}

now using identity, sin²θ + cos²θ = 1

\left(\sqrt[3]{\frac{y}{x}}\right)^2+\left(\frac{1}{\sqrt[3]{x^2y}}\right)^2=1

\left(\frac{y}{x}\right)^{2/3}+\left(\frac{1}{x^2y}\right)^{2/3}=1

Therefore the required equation is \left(\frac{y}{x}\right)^{2/3}+\left(\frac{1}{x^2y}\right)^{2/3}=1

Answered by AditiMane549
10

Hope you find this answer helpful.

Attachments:
Similar questions