Math, asked by Anonymous, 7 months ago

if x = cube root 28 and y = cube root 27, Find the value of x + y - (1 / x^2 + xy + y^2). please solve it if you know

Answers

Answered by vasavatrupti66
2

\mathbf{x+y-\frac{1}{x^{2}+xy+y^{2}}=6}x+y−x2+xy+y21=6

Step-by-step explanation:

Given

     

  \mathbf{x=\sqrt[3]{28}}x=328

   

    So \mathbf{x^{3}=28}x3=28         ...1)

 

       \mathbf{y=\sqrt[3]{27}=3}y=327=3

 

      So \mathbf{y^{3}=27}y3=27         ...2)

First consider

   

   \mathbf{\frac{1}{x^{2}+xy+y^{2}}}x2+xy+y21              ...3)

      Multiply by (x-y) in numerator and denominator, we get

   

  \mathbf{\frac{x-y}{(x-y)(x^{2}+xy+y^{2})}}(x−y)(x2+xy+y2)x−y

      Denominator of above term can be written as

      \mathbf{\frac{x-y}{x^{3}-y^{3}}}x3−y3x−y          ...4)

From equation 1), equation 2) and equation 4)

 

     \mathbf{\frac{x-y}{28-27}=x-y}28−27x−y=x−y    ...5)

   

   Means from equation 3) and equation 5)

 

     \mathbf{\frac{1}{x^{2}+xy+y^{2}}=x-y}x2+xy+y21=x−y      ...6)

Now come to question

 

     \mathbf{x+y-\frac{1}{x^{2}+xy+y^{2}}}x+y−x2+xy+y21      ...7)

 

     From equation 6) , equation 7) can be written as

 

     \mathbf{x+y-\frac{1}{x^{2}+xy+y^{2}}=x+y-(x-y)}x+y−x2+xy+y21=x+y−(x−y)

   

   \mathbf{x+y-\frac{1}{x^{2}+xy+y^{2}}=x+y-x+y}x+y−x2+xy+y21=x+y−x+y

 

     \mathbf{x+y-\frac{1}{x^{2}+xy+y^{2}}=2y}x+y−x2+xy+y21=2y         (where y=3)

 

    \mathbf{x+y-\frac{1}{x^{2}+xy+y^{2}}=6}x+y−x2+xy+y21=6

Answered by Anonymous
2

hiiiiiiiiiiiiiiiiiiiiiiii

Similar questions