Math, asked by maaltikumari, 9 months ago

If x=cy + bz, y = cx + az, z = bx + ay, the value of a² +b² +c²-1 is equal to:
i)abc
ii)- abc
iii)2 abc
iv)-2 abc​

Answers

Answered by BrainlyTornado
6

ANSWER:

  • Option (iv) - 2abc

GIVEN:

  • x = cy + bz

  • y = cx + az

  • z = bx + ay

TO FIND:

  • The value of a² + b² + c² - 1.

EXPLANATION:

Substitute z = bx + ay in y = cx + az

y = cx + a(bx + ay)

y = cx + abx + a²y

y = (c + ab)x + a²y

Substitute z = bx + ay in x = cy + bz

x = cy + b(bx + ay)

x = cy + b²x + bay

x - b²x = cy + bay

x(1 - b²) = cy + bay

x = (cy + bay) / (1 - b²)

Substitute x = (cy + bay) / (1 - b²) in y = (c + ab)x + a²y

 \sf y = (c + ab)\left(\dfrac{cy + bay}{ 1 - b^2}\right) + a^2y

 \sf y = y(c + ab)\left(\dfrac{c + ba}{ 1 - b^2}\right) + a^2y

  \sf1=  \dfrac{y}{y} (c + ab)\left(\dfrac{c + ba}{ 1 - b^2}\right) +  \dfrac{a^2y}{y}

 \sf 1=  \dfrac{(c + ba)^{2} }{ 1 - b^2} +   {a}^{2}

 \boxed{ \bold {\large {(A + B)^2 = A^2  +  2AB + B^2}}}

 \sf 1=  \dfrac{{c}^{2}  + 2abc +  {a}^{2} b^{2}  +  {a}^{2} -  {a}^{2}  {b}^{2}  }{ 1 - b^2}

 \sf 1 -  {b}^{2} =  {c}^{2}  + 2abc +  {a}^{2}

 \sf  0=  {c}^{2}  + 2abc +  {a}^{2}  +  {b}^{2}  - 1

 \sf   -  2abc = {a}^{2}+  {b}^{2} +  {c}^{2}        - 1

Hence the value of a² + b² + c² - 1 = - 2 abc.

Similar questions