Math, asked by sridharutukuri6730, 1 year ago

If xʸ=eˣ-ʸ,prove dy/dx=logx/(logx+1)²

Answers

Answered by hukam0685
0

Step-by-step explanation:

 {x}^{y}  =  {e}^{x - y}  \\  \\

Taking log both sides

y \: log \: x = x - y...eq1 \\  \\ y \: log \: x + y = x \\  \\ y(1 + log \: x) = x \\  \\  \frac{y}{x}  =  \frac{1}{1 + log \: x} ...eq2

Differentiate both side with respect to x

y .\frac{d \: log \: x}{dx}  + log \: x \:  \frac{dy}{dx}  = 1 -  \frac{dy}{dx}  \\  \\ y. \frac{1}{x}  + log \: x \:  \frac{dy}{dx}  = 1 -  \frac{dy}{dx} \\  \\  \frac{y}{x}  - 1 =  -  \frac{dy}{dx}  - log \: x \:  \frac{dy}{dx} \\  \\  -  \frac{dy}{dx} (1 + log \: x) = \frac{y}{x}  - 1 \\  \\  \frac{dy}{dx} (1 + log \: x) = 1 - \frac{y}{x}  \\  \\  \frac{dy}{dx}  =  \frac{ \frac{x - y}{x} }{1 + log \: x}  \\  \\ \frac{dy}{dx} =  \frac{x - y}{x(1 + log \: x)}  \\  \\

From eq1

\frac{dy}{dx} =  \frac{y}{x}  .\frac{\: log \: x}{(1 + log \: x)} \\  \\

From eq2,put the value of y/x

\frac{dy}{dx} =  \frac{1}{(1 + log \: x)}  .\frac{\: log \: x}{(1 + log \: x)} \\  \\  \frac{dy}{dx}  =  \frac{log \: x}{ {(1 + log \: x)}^{2} }  \\  \\

Hence proved.

Hope it helps you.

Similar questions