Math, asked by sbis04, 1 year ago

If x= e^y - e^(-y)/ e^y+ e^(-y) , show that, y= 1/2 { log (1+x/1-x) with base e}


BrainlyMaster: easy

Answers

Answered by samrat00725100
3
x= \frac{ e^{y}- e^{-y}  }{ e^{y} +  e^{-y}  }
Multiplying both side by ( e^{y} + e^{-y} )
[tex]x e^{y} +x e^{-y} = e^{y} - e^{-y} [/tex]
Rearranging
x e^{y} - e^{y} = -xe^{-y} - e^{-y}
Multiplying by -1
e^{y}-xe^{y}=xe^{-y}+e^{-y}
e^{y}(1-x)=e^{-y}(1+x)
 \frac{ e^{y} }{e^{-y}} = \frac{1+x}{1-x}
 e^{2y}= \frac{1+x}{1-x}
Taking log of base e on both sides
2y  log_{e} e=log_{e}( \frac{1+x}{1-x} )
But  log_{e}e=1
∴ y =  \frac{1}{2} log_{e} (\frac{1+x}{1-x} )

sbis04: what do you mean by [tex] ?
samrat00725100: Its a code of writing maths in HTML known as Latex....
samrat00725100: Wait for some while or reload till the scripts are visible as equations..
samrat00725100: Can you mark it as the brainliest........
Similar questions