Science, asked by sahil5321, 1 year ago

if X equal to a sin theta + b cos theta and Y equal a cos theta - b sin theta then find the value of x square + Y square

Answers

Answered by SillySam
15
Heya mate, Here is ur answer

The answer is

x^2+ y^2 = a^2 +b^2

\mathbb{PLS\: REFER\: TO\: ATTACHMENT \:FOR \:SOLUTION}


Identities used --

⏩ Sin^2 theta + cos^2 theta =1.

⏩(a+b)^2=a^2+b^2+2ab

⏩(a-b)^2= a^2 +b^2-2ab

Warm regards

@Laughterqueen

Be Brainly ✌✌✌
Attachments:

sahil5321: thanx
Answered by muscardinus
1

X^2+Y^2=a^2+b^2

Explanation:

Given that,

X=a\sin\theta+b\cos\theta

Y=a\cos\theta-b\sin\theta

We need to find the value of X^2+Y^2

Put the value of X and Y in X^2+Y^2. We get :

X^2+Y^2=(a\sin\theta+b\cos\theta)^2+(a\cos\theta-b\sin\theta)^2\\\\=a^2\sin^2\theta+b^2\cos^2\theta+2ab\cos\theta\sin\theta+(b^2\sin^2\theta+a^2\cos^2\theta-2ab\cos\theta\sin\theta)\\\\=a^2(\sin^2\theta+\cos^2\theta)+b^2(\sin^2\theta+\cos^2\theta)

Since, (\sin^2\theta+\cos^2\theta)=1

X^2+Y^2=a^2+b^2

Hence, this is the required solution.

Learn more,

Trigonometric

https://brainly.in/question/15363371

Similar questions