Math, asked by resu764036, 1 year ago

if X equal to P sec theta + q tan theta and Y = P tan theta + q sec theta then prove that x square minus y square equal to p square minus q square​

Answers

Answered by MaheswariS
16

\underline{\textbf{Given:}}

\mathsf{x=p\;sec\theta+q\;tan\theta}

\mathsf{y=p\;tan\theta+q\;sec\theta}

\underline{\textbf{To prove:}}

\mathsf{x^2-y^2=p^2-q^2}

\underline{\textbf{Solution:}}

\mathsf{x=p\;sec\theta+q\;tan\theta}-------(1)

\mathsf{y=p\;tan\theta+q\;sec\theta}-------(2)

\mathsf{Consider,}

\mathsf{x^2-y^2}

\mathsf{=(p\;sec\theta+q\;tan\theta)^2-(p\;tan\theta+q\;sec\theta)^2}

\textsf{Using the identity}

\boxed{\bf\,(a+b)^2=a^2+b^2+2ab}

\mathsf{=(p^2sec^2\theta+q^2tan^2\theta+2pq\,sec\theta\,tan\theta)-(p^2tan^2\theta+q^2sec^2\theta+2pq\,sec\theta\,tan\theta)}

\mathsf{=p^2sec^2\theta+q^2tan^2\theta+2pq\,sec\theta\,tan\theta-p^2tan^2\theta-q^2sec^2\theta-2pq\,sec\theta\,tan\theta}

\mathsf{=p^2sec^2\theta+q^2tan^2\theta-p^2tan^2\theta-q^2sec^2\theta}

\mathsf{=(p^2-q^2)sec^2\theta-(p^2-q^2)tan^2\theta}

\mathsf{=(p^2-q^2)\,[sec^2\theta-tan^2\theta]}

\mathsf{=(p^2-q^2)\,[1]}\;\;\;\;\;\;\;(\because\bf\,sec^2A-tan^2A=1)

\mathsf{=p^2-q^2}

\implies\boxed{\bf\,x^2-y^2=p^2-q^2}

#SPJ3

Similar questions