Math, asked by Manjuprajapati2, 1 year ago

if x equal to root 5 minus root 2 upon root 5 + root 2 and Y is equal to root 5 + root 2 upon root 5 minus root 2 find the value of x square + xy + Y square

Answers

Answered by MaheswariS
19

\textbf{Given:}

\mathsf{x=\dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}}

\mathsf{y=\dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}}

\textbf{To find:}

\textsf{The value of}\;\mathsf{x^2+xy+y^2}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{x+y=\dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}}

\mathsf{x+y=\dfrac{(\sqrt{5}-\sqrt{2})^2+(\sqrt{5}+\sqrt{2})^2}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}}

\mathsf{x+y=\dfrac{5+2-2\sqrt{5}\sqrt{2}+5+2+2\sqrt{5}\sqrt{2}}{5-2}}

\mathsf{x+y=\dfrac{14}{3}}

\mathsf{Now,}

\mathsf{x^2+xy+y^2}

\textsf{Add and subtract xy}

\mathsf{=(x^2+2xy+y^2)-xy}

\mathsf{=(x+y)^2-xy}

\mathsf{=\left(\dfrac{14}{3}\right)^2-\dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}{\times}\dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}}

\mathsf{=\dfrac{196}{9}-1}

\mathsf{=\dfrac{196-9}{9}}

\mathsf{=\dfrac{187}{9}}

\implies\boxed{\mathsf{x^2+xy+y^2=\dfrac{187}{9}}}

\textbf{Find more:}

If x = √7+ √3 and xy = 4, then x4 + y4 =​

https://brainly.in/question/16537214

If x=√5+1÷√5-1 and y=√5-1÷√5+1 find the value of x^2+ xy +y^2

https://brainly.in/question/3728106

Answered by manasvinagpal2802
13

Step-by-step explanation:

Hope it helps uh!!!!!!!

Attachments:
Similar questions