Math, asked by adityadevsinhaoyj0yc, 1 year ago

if x equals to 3 + under root 8 find x cube + 1 upon x cube

Answers

Answered by abhi569
33
x = 3 + √8

 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8}  }

By Rationalization, we get,


 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} } \:  \times  \frac{3 -  \sqrt{8} }{3  -  \sqrt{8} }  \\  \\  \\  = >  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{(3 +  \sqrt{8} )(3 -  \sqrt{8)} }



 \mathbf{we \: know \:  \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2} }

So,


 =>  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{ {3}^{2} -  {( \sqrt{8}) }^{2}  }  \\  \\  = >  \frac{1}{x}  =  \frac{ 3 -  \sqrt{8} }{9 - 8} = 3 -  \sqrt{8}



Hence,


x  +  \frac{1}{x}  \\  \\  = > 3 +  \sqrt{8}  + 3 -  \sqrt{8 }  \\  \\  => 6 \\  \\  \\ x  +  \frac{1}{x}  = 6 \\  \\  \\  \mathbf{cube \:  \: on \:  \: both \:  \: sides \:  \: } \\  \\  \\  = >  {(x +  \frac{1}{x} )}^{3}  =  {6}^{3}  \\  \\  \\  =>  {x}^{3}  +  \frac{ 1 }{ {x}^{3} }  + 3(x +  \frac{1}{x} )(x \times  \frac{1}{x} ) = 216 \\  \\  = >  {x}^{3}   +  \frac{1}{ {x}^{3} }  + 3(1)(6) = 216 \\  \\  = > {x}^{ 3}  +  \frac{1}{ {x }^{3} }  = 216 - 18 \\  \\  =>  {x}^{3}  +   \frac{1}{ {x}^{3} }  = 198
Answered by himanshubhadauriya89
1

Step-by-step explanation:

please Mark Me As Brainlist ❤️♥️❤️❤️

Attachments:
Similar questions