if x equals to 3 + under root 8 find x cube + 1 upon x cube
Answers
Answered by
33
x = 3 + √8
![\frac{1}{x} = \frac{1}{3 + \sqrt{8} } \frac{1}{x} = \frac{1}{3 + \sqrt{8} }](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B1%7D%7B3+%2B++%5Csqrt%7B8%7D++%7D)
By Rationalization, we get,
![\frac{1}{x} = \frac{1}{3 + \sqrt{8} } \: \times \frac{3 - \sqrt{8} }{3 - \sqrt{8} } \\ \\ \\ = > \frac{1}{x} = \frac{3 - \sqrt{8} }{(3 + \sqrt{8} )(3 - \sqrt{8)} } \frac{1}{x} = \frac{1}{3 + \sqrt{8} } \: \times \frac{3 - \sqrt{8} }{3 - \sqrt{8} } \\ \\ \\ = > \frac{1}{x} = \frac{3 - \sqrt{8} }{(3 + \sqrt{8} )(3 - \sqrt{8)} }](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B1%7D%7B3+%2B++%5Csqrt%7B8%7D+%7D+%5C%3A++%5Ctimes++%5Cfrac%7B3+-++%5Csqrt%7B8%7D+%7D%7B3++-++%5Csqrt%7B8%7D+%7D++%5C%5C++%5C%5C++%5C%5C++%3D+%26gt%3B++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B3+-++%5Csqrt%7B8%7D+%7D%7B%283+%2B++%5Csqrt%7B8%7D+%29%283+-++%5Csqrt%7B8%29%7D+%7D+)
![\mathbf{we \: know \: \: (a - b)(a + b) = {a}^{2} - {b}^{2} } \mathbf{we \: know \: \: (a - b)(a + b) = {a}^{2} - {b}^{2} }](https://tex.z-dn.net/?f=+%5Cmathbf%7Bwe+%5C%3A+know+%5C%3A++%5C%3A+%28a+-+b%29%28a+%2B+b%29+%3D++%7Ba%7D%5E%7B2%7D++-++%7Bb%7D%5E%7B2%7D+%7D)
So,
![=> \frac{1}{x} = \frac{3 - \sqrt{8} }{ {3}^{2} - {( \sqrt{8}) }^{2} } \\ \\ = > \frac{1}{x} = \frac{ 3 - \sqrt{8} }{9 - 8} = 3 - \sqrt{8} => \frac{1}{x} = \frac{3 - \sqrt{8} }{ {3}^{2} - {( \sqrt{8}) }^{2} } \\ \\ = > \frac{1}{x} = \frac{ 3 - \sqrt{8} }{9 - 8} = 3 - \sqrt{8}](https://tex.z-dn.net/?f=+%3D%26gt%3B++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B3+-++%5Csqrt%7B8%7D+%7D%7B+%7B3%7D%5E%7B2%7D+-++%7B%28+%5Csqrt%7B8%7D%29+%7D%5E%7B2%7D++%7D++%5C%5C++%5C%5C++%3D+%26gt%3B++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Cfrac%7B+3+-++%5Csqrt%7B8%7D+%7D%7B9+-+8%7D+%3D+3+-++%5Csqrt%7B8%7D+)
Hence,
![x + \frac{1}{x} \\ \\ = > 3 + \sqrt{8} + 3 - \sqrt{8 } \\ \\ => 6 \\ \\ \\ x + \frac{1}{x} = 6 \\ \\ \\ \mathbf{cube \: \: on \: \: both \: \: sides \: \: } \\ \\ \\ = > {(x + \frac{1}{x} )}^{3} = {6}^{3} \\ \\ \\ => {x}^{3} + \frac{ 1 }{ {x}^{3} } + 3(x + \frac{1}{x} )(x \times \frac{1}{x} ) = 216 \\ \\ = > {x}^{3} + \frac{1}{ {x}^{3} } + 3(1)(6) = 216 \\ \\ = > {x}^{ 3} + \frac{1}{ {x }^{3} } = 216 - 18 \\ \\ => {x}^{3} + \frac{1}{ {x}^{3} } = 198 x + \frac{1}{x} \\ \\ = > 3 + \sqrt{8} + 3 - \sqrt{8 } \\ \\ => 6 \\ \\ \\ x + \frac{1}{x} = 6 \\ \\ \\ \mathbf{cube \: \: on \: \: both \: \: sides \: \: } \\ \\ \\ = > {(x + \frac{1}{x} )}^{3} = {6}^{3} \\ \\ \\ => {x}^{3} + \frac{ 1 }{ {x}^{3} } + 3(x + \frac{1}{x} )(x \times \frac{1}{x} ) = 216 \\ \\ = > {x}^{3} + \frac{1}{ {x}^{3} } + 3(1)(6) = 216 \\ \\ = > {x}^{ 3} + \frac{1}{ {x }^{3} } = 216 - 18 \\ \\ => {x}^{3} + \frac{1}{ {x}^{3} } = 198](https://tex.z-dn.net/?f=x++%2B++%5Cfrac%7B1%7D%7Bx%7D++%5C%5C++%5C%5C++%3D+%26gt%3B+3+%2B++%5Csqrt%7B8%7D++%2B+3+-++%5Csqrt%7B8+%7D++%5C%5C++%5C%5C++%3D%26gt%3B+6+%5C%5C++%5C%5C++%5C%5C+x++%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D+6+%5C%5C++%5C%5C++%5C%5C++%5Cmathbf%7Bcube+%5C%3A++%5C%3A+on+%5C%3A++%5C%3A+both+%5C%3A++%5C%3A+sides+%5C%3A++%5C%3A+%7D+%5C%5C++%5C%5C++%5C%5C++%3D+%26gt%3B++%7B%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29%7D%5E%7B3%7D++%3D++%7B6%7D%5E%7B3%7D++%5C%5C++%5C%5C++%5C%5C++%3D%26gt%3B++%7Bx%7D%5E%7B3%7D++%2B++%5Cfrac%7B+1+%7D%7B+%7Bx%7D%5E%7B3%7D+%7D++%2B+3%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29%28x+%5Ctimes++%5Cfrac%7B1%7D%7Bx%7D+%29+%3D+216+%5C%5C++%5C%5C++%3D+%26gt%3B++%7Bx%7D%5E%7B3%7D+++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B3%7D+%7D++%2B+3%281%29%286%29+%3D+216+%5C%5C++%5C%5C++%3D+%26gt%3B+%7Bx%7D%5E%7B+3%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx+%7D%5E%7B3%7D+%7D++%3D+216+-+18+%5C%5C++%5C%5C++%3D%26gt%3B++%7Bx%7D%5E%7B3%7D++%2B+++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B3%7D+%7D++%3D+198)
By Rationalization, we get,
So,
Hence,
Answered by
1
Step-by-step explanation:
please Mark Me As Brainlist ❤️♥️❤️❤️
Attachments:
![](https://hi-static.z-dn.net/files/d74/eab7853a0eae44f8057b5bd297cb64e7.jpg)
![](https://hi-static.z-dn.net/files/d6f/9a465d9cc9b55fc2c03d10249ead228b.jpg)
![](https://hi-static.z-dn.net/files/d27/15727a4ecc5ed7688ab42d1798629908.jpg)
![](https://hi-static.z-dn.net/files/d12/9971795a9770325a8bd1eaa9d03bf77e.jpg)
Similar questions