if X equals to root 5 minus 2 by root 5 + 2 and y equals to root 5 + 2 by root 5 minus 2. then find the value of x square + y square minus xy
Answers
Answer:
Step-by-step explanation:
Hope u like my process
=====================
x = \frac{ \sqrt{5} - \sqrt{2} }{ \sqrt{5} + \sqrt{2} } \\ \\ y = \frac{ \sqrt{5} + \sqrt{2} }{ \sqrt{5} - \sqrt{2} } \\ \\ x + y = \frac{ \sqrt{5} - \sqrt{2} }{ \sqrt{5} + \sqrt{2} } + \frac{ \sqrt{5} + \sqrt{2} }{ \sqrt{5} - \sqrt{2} } \\ = \frac{ {( \sqrt{5} - \sqrt{2}) }^{2} + {( \sqrt{5} + \sqrt{2} ) }^{2} }{( \sqrt{5} - \sqrt{2})( \sqrt{5} + \sqrt{2} ) } \\ = \frac{5 + 2 - 2 \sqrt{10} + 5 + 2 + 2 \sqrt{10} }{ {( \sqrt{5} )}^{2} - {( \sqrt{2}) }^{2} } \\ = \frac{14}{5 - 2} = \frac{14}{3} \\ \\ xy = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \\ = 1
Now..
x² + xy + y²
= x² + 2xy + y² - xy
= (x +y) ² - xy
= {( \frac{14}{3}) }^{2} - 1 \\ = \frac{196}{9} - 1 \\ = \frac{196 - 9}{9} = \frac{187}{9}
Hope this is ur required answer
Proud to help you
Click to let others know
hi pls give the ans I need it