Math, asked by is8habbarominkya, 1 year ago

If x>0 and x 2 +1/9x 2 =25/36, find:x 3 +1/27x 3

Answers

Answered by ShivajiK
48
x²+(1÷9x²) = 25÷36
x² + ( 1÷3x)² + 2 × x × (1÷3x) = 25÷36 + 2÷3
(x+(1÷3x))² = 49÷36
x+(1÷3x) = 7÷6
x³ + (1÷27x³) = (x + (1÷3x))×(x² – (1÷3) + (1÷3x) ²)
= (7÷6) × ((25÷36) – (1÷3))
= (7/6)×(13/36)
= 91/216
Answered by pinquancaro
37

Answer:

x^3+\frac{1}{27x^3}=\frac{91}{216}

Step-by-step explanation:

Given : If x>0 x^2+\frac{1}{9x^2}=\frac{25}{36}

To find : x^3+\frac{1}{27x^3}

Solution :

x^2+\frac{1}{9x^2}=\frac{25}{36}

x^2+(\frac{1}{3x})^2+ 2(x)(\frac{1}{3x})=\frac{25}{36}+ 2(x)(\frac{1}{3x})

(x+\frac{1}{3x})^2=\frac{25}{36}+\frac{2}{3}

(x+\frac{1}{3x})^2=\frac{49}{36}

Taking root both side,

x+\frac{1}{3x}=\frac{7}{6}

We know,

x^3+\frac{1}{27x^3}=x^3+(\frac{1}{3x})^3

x^3+\frac{1}{27x^3}=(x+\frac{1}{3x})\times (x^2-\frac{1}{3}+(\frac{1}{3x})^2)

x^3+\frac{1}{27x^3}=(\frac{7}{6})\times (\frac{25}{36}-\frac{1}{3})

x^3+\frac{1}{27x^3}=\frac{7}{6}\times \frac{13}{36}

x^3+\frac{1}{27x^3}=\frac{91}{216}

Therefore, x^3+\frac{1}{27x^3}=\frac{91}{216}

Similar questions