Math, asked by nandanisolanki, 2 months ago

If x>0 and x² +1/9x² = 25/36, find x³+ 1/27x³​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{9 {x}^{2} }  = \dfrac{25}{36}

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {(3x)}^{2} }  = \dfrac{25}{36}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{2} - 2 \times x \times \dfrac{1}{3x} = \dfrac{25}{36}

\green{\boxed{ \bf{ \:  \because \:  {x}^{2}  +  {y}^{2} =  {(x + y)}^{2} - 2xy}}}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{2} -  \dfrac{2}{3} = \dfrac{25}{36}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{2}  = \dfrac{25}{36} +  \dfrac{2}{3}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{2}  = \dfrac{25 + 24}{36}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{2}  = \dfrac{49}{36}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{2}  = \dfrac{ {7}^{2} }{ {6}^{2} }

\rm :\implies\:x + \dfrac{1}{3x} = \dfrac{7}{6}   \:  \:  \: as \: x \:  >  \: 0

On cubing both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{3x} \bigg) }^{3} =  {\bigg(\dfrac{7}{6} \bigg) }^{3}

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {27x}^{3} } + 3 \times x \times \dfrac{1}{3x}\bigg(x + \dfrac{1}{3x} \bigg) = \dfrac{343}{216}

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {27x}^{3} } +  \dfrac{7}{6} = \dfrac{343}{216}

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {27x}^{3} }  = \dfrac{343}{216} -  \dfrac{7}{6}

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {27x}^{3} }  = \dfrac{343 - 252}{216}

\bf :\longmapsto\: {x}^{3} + \dfrac{1}{ {27x}^{3} }  = \dfrac{91}{216}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions