Math, asked by Anonymous, 1 month ago

If x > 0 then find :
 \sum^{ \infty}_{x = 1} \left(  \dfrac{x}{x + 1} \right)^{n - 1}

Answers

Answered by hukam0685
1

Step-by-step explanation:

Given: \sum^{ \infty}_{n = 1} \left( \dfrac{x}{x + 1} \right)^{n - 1} \\

To find: Evaluate the summation if x>0

Solution:

Step 1 :Expand the summation

 \sum^{ \infty}_{n = 1} \left( \dfrac{x}{x + 1} \right)^{n - 1} \\

 = \left( { \frac{x}{x + 1} }\right)^{0}  +  \left( { \frac{x}{x + 1} }\right)^{1}   +\left( { \frac{x}{x + 1} }\right)^{2}   + \left( { \frac{x}{x + 1} }\right)^{3}    + ... ∞\\

Simplify

 = 1 +  \frac{x}{x + 1}  + \left( { \frac{x}{x + 1} }\right)^{2}  + \left( { \frac{x}{x + 1} }\right)^{3}  + ...∞ \\

Step 2: Identify the series

It is an infinite GP

its first term is, a= 1

it's common ratio is,r= x/x+1

Step 3: Apply sum of infinite GP

 S_∞=\frac{a}{1 - r}  \\

if r<1

Apply the sum

 =  \frac{1}{1 -  \frac{x}{x + 1}} \\  \\  =  \frac{1}{ \frac{ \cancel x + 1 - \cancel x}{x + 1} }   \\  \\  =  \frac{1}{ \frac{1}{x + 1} }  \\  \\  = x + 1 \\  \\

Final answer:

 \bold{\red{\sum^{ \infty}_{n = 1} \left( \dfrac{x}{x + 1} \right)^{n - 1} =x+1}}\\

Hope it helps you.

To learn more on brainly:

1) Find the equation of the line passing through the point (-3.6, 2.1) and parallel to the line 4.9x + 5.4y = 3

https://brainly.in/question/45412085

2) In a finite GP of 7 positive terms, if the sum of the first 3 terms is 7 and the sum of the last 3 terms is 112, then...

https://brainly.in/question/43541804

Similar questions