Math, asked by Anonymous, 2 days ago

If x > 0, then find :
\sum\limits_{n\to1} ^\infty\left(\dfrac{x}{x+1}\right)^{n-1}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\:\sum\limits_{n\to1} ^\infty\left(\dfrac{x}{x+1}\right)^{n-1}

Let first simplify the summation by substituting n = 1, 2, 3, --

So, we get

 \rm =  \: 1 + \bigg[\dfrac{x}{x + 1} \bigg] +  {\bigg[\dfrac{x}{x + 1} \bigg]}^{2}  +  {\bigg[\dfrac{x}{x + 1} \bigg]}^{3}  +  -  -

Now, its given that,

 \red{\rm :\longmapsto\:x > 0}

 \red{\rm :\longmapsto\:x + 1 > x}

 \red{\rm \implies\:\dfrac{x}{x + 1}  \:  <  \: 1 \: }

Further more,

 \rm =  \: 1 + \bigg[\dfrac{x}{x + 1} \bigg] +  {\bigg[\dfrac{x}{x + 1} \bigg]}^{2}  +  {\bigg[\dfrac{x}{x + 1} \bigg]}^{3}  +  -  -

represents an infinite GP series, whose

\rm :\longmapsto\:a \:  =  \: 1

and

\rm :\longmapsto\:r \:  =  \: \dfrac{x}{x + 1}

We know,

The sum of infinite GP series whose First term is a and Common ratio r respectively, then

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_ \infty \:=\: \frac{a}{1 - r} \:  \: provided \: that \:  |r|  < 1 }}}}}} \\ \end{gathered}

Now,

We have

 \red{\rm :\longmapsto\:x > 0}

 \red{\rm \implies\:\dfrac{x}{x + 1}  > 0}

and

 \red{\rm \implies\:\dfrac{x}{x + 1}   <  1}

So,

 \red{\rm \implies\:0 < \dfrac{x}{x + 1}   <  1}

So,

 \rm  \: 1 + \bigg[\dfrac{x}{x + 1} \bigg] +  {\bigg[\dfrac{x}{x + 1} \bigg]}^{2}  +  {\bigg[\dfrac{x}{x + 1} \bigg]}^{3}  +  -  -

 \rm =  \: \dfrac{1}{1 - \dfrac{x}{x + 1} }

 \rm =  \: \dfrac{1}{\dfrac{x + 1 - x}{x + 1} }

 \rm =  \: \dfrac{1}{\dfrac{1}{x + 1} }

 \rm =  \: x + 1

Hence,

\rm \implies\:\boxed{ \tt{ \: \sum\limits_{n\to1} ^\infty\left(\dfrac{x}{x+1}\right)^{n-1} = x + 1 \: }}

Additional Information :-

The general term of GP series

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\: {r}^{n \:  -  \: 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Sum of n terms of GP series

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\: \frac{a \: ( {r}^{n} \:  -  \: 1) }{r \:  -  \: 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Similar questions