Math, asked by anshkumarroya, 1 year ago

If x>0,y>0 & z>0, then prove that (×+y)(y+z)(z+x)\geqslant8xyz (JEE-MAINS)​

Answers

Answered by BrainlyConqueror0901
104

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{A.M\geqslant\:G.M}}}

TO SOLVE THIS QUESTION WE KNOW THAT A.M IS GREATER THAN OR EQUALS TO G.M .

SO, FROM THIS WE MAKE THREE EQUATION THEN MULTIPLY THOSE EQN.

\huge{\boxed{\sf{PROOF-}}}

 \frac{x + y}{2}  \geqslant  \sqrt{xy} -  -  -  -  - (1) \\  \frac{y + z}{2} \geqslant  \sqrt{yz}   -  -  -  -  - (2) \\  \frac{z + x}{2}  \geqslant  \sqrt{zx} -  -  -  -  - (3)  \\ (1) \times (2)  \times (3) \: we \: get \\ =)( \frac{x + y}{2})   \times  (\frac{y + z}{2})   \times  ( \frac{z + x}{2})  \geqslant  \sqrt{x \times y \times y \times z \times z \times x}  \\=)  ( \frac{x + y}{2})    \times   (\frac{y + z}{2})   \times  ( \frac{z + x}{2})  \geqslant xyz \\ =)(x + y)(y + z)(z + x) \geqslant 8xyz

\huge{\boxed{\sf{PROVED}}}

Answered by adityaaryaas
0

Answer:

Please find the attached images.

Step-by-step explanation:

Attachments:
Similar questions