Math, asked by prerana2002, 1 year ago

if X +i Y is equal to 2 + i / 2 - i then prove that X square + Y square is equal to 1​

Answers

Answered by jainishpjain
8

The answer is this we use complex numbers to solve it

Attachments:
Answered by harendrachoubay
4

x^{2} +y^{2} =1, proved.

Step-by-step explanation:

We have,

x + iy = \dfrac{2+i}{2-i}

To prove that, x^{2} +y^{2} =1.

∴ x + iy = \dfrac{2+i}{2-i}

Rationalising numerator and denominator, we get

⇒ x + iy = \dfrac{2+i}{2-i}\times \dfrac{2+i}{2+i}

⇒ x + iy = \dfrac{(2+i)^2}{2^2-i^2}

⇒ x + iy = \dfrac{4+4i+i^2}{4-(-1)}

⇒ x + iy = \dfrac{4+4i-1}{5} [ ∵ i^{2} =-1]

⇒ x + iy = \dfrac{3}{5}+i\dfrac{4}{5}

Comparing both sides, we get

∴ x = \dfrac{3}{5} and y = \dfrac{4}{5}

L.H.S.= \sqrt{x^{2}+y^{2}}

= \sqrt{(\dfrac{3}{5} )^{2}+(\dfrac{4}{5} )^{2}}

=\sqrt{\dfrac{9}{25} +\dfrac{16}{25}}

=\sqrt{\dfrac{9+16}{25}}

=\sqrt{\dfrac{25}{25}}

= 1 = R.H.S., proved.

Similar questions