if X + i y whole cube equals to u + IV then show that you divided by X + we divided by y equals to 4 x square minus y square
Answers
Answered by
5
u/x + v/y = 4(x² - y²) if (x + iy)³ = u + iv
Step-by-step explanation:
(x + iy)³ = u + iv
x³ + (iy)³ + 3x²(iy) + 3x(iy)² = u + iv
=> x³ - iy³ + i 3x²y - 3xy² = u + iv
=> x³ - 3xy² + i (3x²y - y³) = u + iv
=> x(x² - 3y²) + iy(3x² - y²) = u + iv
u = x(x² - 3y²)
=> u/x = x² - 3y²
v = y(3x² - y²)
=> v/y = 3x² - y²
u/x + v/y = x² - 3y² + 3x² - y²
=> u/x + v/y = 4x² - 4y²
=> u/x + v/y = 4(x² - y²)
Learn more
Find the square root of complex number 8-15i
https://brainly.in/question/1207060
If x – iy = [(a-ib)/(c-id)]^(1/2) prove that (x^2 + y^2)^2 = (a^2 + b^2)/(c^2 + d^2)
https://brainly.in/question/1566823
Similar questions