Math, asked by MonsieurBrainly, 1 year ago

If x is 2 + root 3 then the value of x + 1/x is

Answers

Answered by DaIncredible
3
Heya friend,
Here is the answer you were looking for:
x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x} =  \frac{1}{2 +  \sqrt{3} }   \\

On rationalizing the denominator we get,

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}  \\  \\ =  x +  \frac{1}{x}
Putting the values :


x +  \frac{1}{x}  = (2  + \sqrt{3} ) + (2 -  \sqrt{3} ) \\  \\ x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\ x +  \frac{1}{x}  = 4


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Answered by Anonymous
78

\huge\underline\mathfrak\orange{Answer-}

value of x+\dfrac{1}{x} = 4

\huge\underline\mathfrak\orange{Explanation-}

Given :

  • x = 2 + √3

To find :

  • Value of x + \dfrac{1}{x}

Solution :

It is given that,

x = 2 + √3

We have to find the value of \dfrac{1}{x}

\dfrac{1}{x} = \dfrac{1}{2+\sqrt{3}}

Rationalising the denominator,

\implies \dfrac{1}{2+\sqrt{3}} × \dfrac{2-\sqrt{3}}{2-\sqrt{3}}

\implies \dfrac{2-\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})}

We know that,

(a+b)(a-b) = a² - b²

\implies \dfrac{2-\sqrt{3}}{{2}^{2}-3}

\implies \dfrac{2-\sqrt{3}}{4-3}

\implies 2 - √3

Therefore, \dfrac{1}{x} = 2 - √3

________________

Now, we have to find the value of x + \dfrac{1}{x}

\implies ( 2 + √3 ) + ( 2 - √3 )

\implies 2 + √3 + 2 - √3

\implies 2 + \cancel{\sqrt{3}} + 2 - \cancel{\sqrt{3}}

\implies 2 + 2

\implies 4

Therefore, value of \bold{x+\dfrac{1}{x}} = 4

Similar questions