Computer Science, asked by bm582516, 2 months ago

If x is a passion random variable with parameter value 4.5, find p(x=1) and P (X = 7).

Answers

Answered by pulakmath007
10

SOLUTION

GIVEN

X is a poisson random variable with parameter value 4.5

TO DETERMINE

P(X = 1) and P (X = 7)

CONCEPT TO BE IMPLEMENTED

X is a poisson random variable with parameter μ then

 \displaystyle \sf{P(X = r) =  {e}^{ -  \mu}. \frac{ { \mu}^{r} }{r \: !}  }

Where μ > 0 and r = 1 , 2 , 3 , ....

EVALUATION

We know if X is a poisson random variable with parameter μ then

 \displaystyle \sf{P(X = r) =  {e}^{ -  \mu}. \frac{ { \mu}^{r} }{r \: !}  }

Where μ > 0 and r = 1 , 2 , 3 , ....

Here it is given that X is a poisson random variable with parameter value 4.5

∴ μ = 4.5

Now

 \displaystyle \sf{P(X = 1) =  {e}^{ -  \mu}. \frac{ { \mu}^{1} }{1 \: !}  }

 \displaystyle \sf{ \implies \: P(X = 1) =  {e}^{ -4.5}. \frac{ {(4.5)}^{1} }{1 \: !}  }

 \displaystyle \sf{ \implies \: P(X = 1) = 0.0111 \times 4.5  }

 \displaystyle \sf{ \implies \: P(X = 1) = 0.04995}

Again

 \displaystyle \sf{ \: P(X = 7) =  {e}^{ -4.5}. \frac{ {(4.5)}^{7} }{7 \: !}  }

 \displaystyle \sf{ \implies \: P(X = 7) = 0.0111 \times  \frac{37366.94}{5040}  }

 \displaystyle \sf{ \implies \: P(X = 7) =0.0823}

FINAL ANSWER

 \boxed{ \:  \:  \displaystyle \sf{P(X = 1) = 0.04995 \:  \: }}

 \boxed{ \:  \:  \displaystyle \sf{  P(X = 7) =0.0823} \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If the variance of the poissons distribution is 2,find the probability for r=1,2,3 and 4 from the recurrence relation of...

https://brainly.in/question/23494639

2. If random variables has Poisson distribution such that p(2) =p(3), then p(5) =

https://brainly.in/question/23859240

Similar questions